Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(10): 3045-3055, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39416968

RESUMO

Increasing evidence substantiates the role of mitochondrial dysfunction, inflammation, fibrosis, and cell senescence in the onset and progression of acute kidney injury (AKI) to chronic kidney disease . The underlying governing cellular and transcriptional events, however, are not fully understood. Recently, the key factors that regulate successful and failed repair states in the proximal tubule have been identified at a single-cell resolution following bilateral ischemia-reperfusion (I/R) in a mouse model of AKI. Previously, our group showed that treatment with the FDA-approved selective 5-hydroxytryptamine receptor 1F agonist lasmiditan following AKI induces mitochondrial biogenesis , restores renal mitochondrial function, and increases renal and vascular recovery in vivo. Here, we assessed the effect of lasmiditan on transcriptional and translational changes that are responsible for successful repair, injury, and failed repair states in the renal cortex following I/R-induced AKI. Increased levels of successful repair genes such as acyl-coA synthase medium-chain family member 2a, low-density lipoprotein receptor-related protein 2, solute carrier family 5 member 12, and hepatocyte nuclear factor 4 alpha were observed with 6 and 12 days of lasmiditan treatment following AKI compared to vehicle control. While 6 days of lasmiditan treatment had no effect on failed repair genes, the administration of lasmiditan for 12 days decreased the levels of vascular cell adhesion protein 1, tumor necrosis factor α, and interleukin-1ß, which drive maladaptive repair. These data reveal that lasmiditan treatment post-AKI differentially regulates successful and failed repair gene expression in the renal cortex, likely contributing to the restoration of renal function and providing a potential targeted therapeutic pathway for the treatment of AKI.

2.
bioRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961132

RESUMO

Merkel Cell Carcinoma (MCC) is a highly aggressive neuroendocrine cutaneous malignancy arising from either ultraviolet-induced mutagenesis or Merkel cell polyomavirus (MCPyV) integration. It is the only known neuroendocrine tumor (NET) with a virus etiology. Despite extensive research, our understanding of the molecular mechanisms driving the transition from normal cells to MCC remains limited. To address this knowledge gap, we assessed the impact of inducible MCPyV T antigens into normal human fibroblasts by performing RNA sequencing. Our findings suggested that the WNT signaling pathway plays a critical role in the development of MCC. To test this model, we bioinformatically evaluated various perturbagens for their ability to reverse the MCC gene expression signature and identified pyrvinium pamoate, an FDA-approved anthelminthic drug known for its anti-tumor potential in multiple cancers. Leveraging transcriptomic, network, and molecular analyses, we found that pyrvinium effectively targets multiple MCC vulnerabilities. Specifically, pyrvinium not only reverses the neuroendocrine features of MCC by modulating canonical and non-canonical WNT signaling pathways but also inhibits cancer cell growth by activating the p53-mediated apoptosis pathway, disrupting mitochondrial function, and inducing endoplasmic reticulum (ER) stress. Pyrvinium also effectively inhibits tumor growth in an MCC mouse xenograft model. These findings offer new avenues for the development of therapeutic strategies for neuroendocrine cancer and highlight the utility of pyrvinium as a potential treatment for MCC.

3.
Biochem Pharmacol ; 218: 115855, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866804

RESUMO

BACKGROUND: Mitochondrial dysfunction is a well-established result of acute kidney injury (AKI). Previously, we identified that 5-hydroxytryptamine 1F (5-HT1F) receptor agonism with lasmiditan induces mitochondrial biogenesis (MB) and improves renal vasculature and function in an AKI mouse model. We hypothesize that lasmiditan also modulates mitochondrial dynamics and mitophagy in a mouse model of AKI. METHODS: Male mice were subjected to renal ischemia/reperfusion (I/R) and treated daily with lasmiditan (0.3 mg/kg) or vehicle beginning 24 h after injury for 3 or 6d. Serum creatinine was measured to estimate glomerular filtration. Electron microscopy was used to assess mitochondrial morphology and mitophagy. Mitochondrial-related protein were confirmed with immunoblotting. Mitochondrial function was assessed with ATP measurements. RESULTS: Lasmiditan treatment improved mitochondrial and kidney recovery as early as 3d post-AKI, as evidenced by increased ATP, and decreased serum creatinine, respectively. Electron micrographs of renal cortices revealed that lasmiditan also decreased mitochondrial damage and increased mitochondrial area and size by 6d after I/R injury. Additionally, lasmiditan treatment increased mitolysosomes by 3d, indicating induction of mitophagy. Phosphorylation of mitophagy-related proteins were also increased in the renal cortices of lasmiditan-treated AKI mice 3d after I/R injury, whereas fusion-related proteins were increased at 6d after I/R injury. CONCLUSION: These data reveal that lasmiditan accelerates renal recovery, restores normal mitochondrial membrane and cristae morphology, decreases excessive mitochondrial fission, and accelerates mitophagy post-AKI in a time-dependent manner, establishing mitochondrial function and recovery from AKI.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Camundongos , Masculino , Animais , Creatinina/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Modelos Animais de Doenças , Trifosfato de Adenosina/metabolismo
4.
J Neurosci ; 42(2): 325-348, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819339

RESUMO

Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/uso terapêutico , Encéfalo/efeitos dos fármacos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Inflamação/tratamento farmacológico , Fatores Etários , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Resultado do Tratamento
5.
J Pharmacol Exp Ther ; 380(2): 126-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34893553

RESUMO

The aim of this study was to test whether poststroke oral administration of a small molecule p75 neurotrophin receptor (p75NTR) modulator (LM11A-31) can augment neuronal survival and improve recovery in a mouse model of stroke. Mice were administered LM11A-31 for up to 12 weeks, beginning 1 week after stroke. Metabolomic analysis revealed that after 2 weeks of daily treatment, mice that received LM11A-31 were distinct from vehicle-treated mice by principal component analysis and had higher levels of serotonin, acetylcholine, and dopamine in their ipsilateral hemisphere. LM11A-31 treatment also improved redox homeostasis by restoring reduced glutathione. It also offset a stroke-induced reduction in glycolysis by increasing acetyl-CoA. There was no effect on cytokine levels in the infarct. At 13 weeks after stroke, adaptive immune cell infiltration in the infarct was unchanged in LM11A-31-treated mice, indicating that LM11A-31 does not alter the chronic inflammatory response to stroke at the site of the infarct. However, LM11A-31-treated mice had less brain atrophy, neurodegeneration, tau pathology, and microglial activation in other regions of the ipsilateral hemisphere. These findings correlated with improved recovery of motor function on a ladder test, improved sensorimotor and cognitive abilities on a nest construction test, and less impulsivity in an open field test. These data support small molecule modulation of the p75NTR for preserving neuronal health and function during stroke recovery. SIGNIFICANCE STATEMENT: The findings from this study introduce the p75 neurotrophin receptor as a novel small molecule target for promotion of stroke recovery. Given that LM11A-31 is in clinical trials as a potential therapy for Alzheimer's disease, it could be considered as a candidate for assessment in stroke or vascular dementia studies.


Assuntos
Infarto da Artéria Cerebral Média/tratamento farmacológico , Isoleucina/análogos & derivados , Morfolinas/farmacologia , Fármacos Neuroprotetores/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Glutationa/metabolismo , Glicólise , Infarto da Artéria Cerebral Média/metabolismo , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Neurotransmissores/metabolismo , Receptor de Fator de Crescimento Neural/metabolismo
6.
Toxicol Appl Pharmacol ; 411: 115366, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316273

RESUMO

Mitochondrial dysfunction is a well-characterized consequence of spinal cord injury (SCI). We previously reported that treatment with the FDA-approved ß2-adrenergic receptor agonist formoterol beginning 8 h post-SCI induces mitochondrial biogenesis (MB) and improves body composition and locomotor recovery in female mice. To determine the time-to-treatment window of formoterol, female mice were subjected to 80 kdyn contusion SCI and daily administration of vehicle or formoterol (0.3 mg/kg) beginning 24 h after injury. This delayed treatment paradigm improved body composition in female mice by 21 DPI, returning body weight to pre-surgery weight and restoring gastrocnemius mass to sham levels; however, there was no effect on locomotor recovery, as measured by the Basso-Mouse Scale (BMS), or lesion volume. To assess the cross-sex potential of formoterol, injured male mice were treated with vehicle or formoterol (0.3 or 1.0 mg/kg) beginning 8 h after SCI. Formoterol also improved body composition post-SCI in male mice, restoring body weight and muscle mass regardless of dose. Interestingly, however, improved BMS scores and decreased lesion volume was observed only in male mice treated with 0.3 mg/kg. Additionally, 0.3 mg/kg formoterol induced MB in the gastrocnemius and injured spinal cord, as evidenced by increased MB protein expression and mitochondrial number. These data indicate that formoterol treatment improves recovery post-SCI in both male and female mice in a dose- and initiation time-dependent manner. Furthermore, formoterol-induced functional recovery post-SCI is not directly associated with peripheral effects, such as muscle mass and body weight.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/administração & dosagem , Fumarato de Formoterol/administração & dosagem , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Biogênese de Organelas , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Tempo para o Tratamento , Animais , Composição Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestrutura , Receptores Adrenérgicos beta 2/metabolismo , Recuperação de Função Fisiológica , Fatores Sexuais , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Fatores de Tempo
7.
J Biol Chem ; 295(52): 18091-18104, 2020 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-33087445

RESUMO

Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 5/química , Endotélio Vascular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Inibidores da Fosfodiesterase 5/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Núcleo Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Humanos , Mitocôndrias/patologia , Biogênese de Organelas , Consumo de Oxigênio , Fatores de Transcrição/genética
8.
Exp Neurol ; 322: 113064, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31525347

RESUMO

In addition to local spinal cord dysfunction, spinal cord injury (SCI) can result in decreased skeletal muscle mitochondrial activity and muscle atrophy. Treatment with the FDA-approved ß2-adrenergic receptor (ADRB2) agonist formoterol has been shown to induce mitochondrial biogenesis (MB) in both the spinal cord and skeletal muscle and, therefore, has the potential to address comprehensive mitochondrial and organ dysfunction following SCI. Female C57BL/6 mice were subjected to moderate contusion SCI (80 Kdyn) followed by daily administration of vehicle or formoterol beginning 8 h after injury, a clinically relevant time-point characterized by a 50% decrease in mtDNA content in the injury site. As measured by the Basso Mouse Scale, formoterol treatment improved locomotor recovery in SCI mice compared to vehicle treatment by 7 DPI, with continued recovery observed through 21 DPI (3.5 v. 2). SCI resulted in 15% body weight loss in all mice by 3 DPI. Mice treated with formoterol returned to pre-surgery weight by 13 DPI, while no weight gain occurred in vehicle-treated SCI mice. Remarkably, formoterol-treated mice exhibited a 30% increase in skeletal muscle mass compared to those treated with vehicle 21 DPI (0.93 v. 0.72% BW), corresponding with increased MB and decreased skeletal muscle atrophy. These effects were not observed in ADRB2 knockout mice subjected to SCI, indicating that formoterol is acting via the ADRB2 receptor. Furthermore, knockout mice exhibited decreased basal spinal cord and skeletal muscle PGC-1α expression, suggesting that ADRB2 may play a role in mitochondrial homeostasis under physiological conditions. These data provide evidence for systemic ADRB2-mediated MB as a therapeutic avenue for the treatment of SCI.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Fumarato de Formoterol/farmacologia , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Atrofia Muscular/etiologia , Biogênese de Organelas , Receptores Adrenérgicos beta 2 , Traumatismos da Medula Espinal/complicações
9.
Sci Rep ; 7(1): 10578, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28874749

RESUMO

Mitochondrial dysfunction is associated with numerous acute and chronic degenerative diseases. The beta-2 adrenergic receptor (ß2AR) agonist formoterol induces mitochondrial biogenesis (MB), but other ß2AR agonists, such as clenbuterol, do not. We sought to identify the MB signaling pathway of formoterol and the differences in signaling between these two ligands that result in the differential induction of MB. While formoterol and clenbuterol increased cAMP, only formoterol increased the phosphorylation of Akt and its downstream target eNOS. The increase in Akt phosphorylation was Gßγ- and PI3K-dependent, and the increase in eNOS phosphorylation was Gßγ- and Akt-dependent. Only formoterol increased cGMP. Formoterol induced MB as measured by increases in uncoupled cellular respiration and PGC-1α and NDUFS1 mRNA expression and was blocked by inhibitors of Gßγ, Akt, NOS, and soluble guanylate cyclase. To identify distinct receptor-ligand interactions leading to these differences in signaling, we docked formoterol and clenbuterol to six structures of the ß2AR. Compared to clenbuterol, the methoxyphenyl group of formoterol interacted more frequently with V114 and F193, while its formamide group interacted more frequently with C191. These data indicate that the unique structural features of formoterol allow it to interact with the ß2AR to activate the Gßγ-Akt-eNOS-sGC pathway to induce MB.


Assuntos
Clembuterol/química , Clembuterol/farmacologia , Fumarato de Formoterol/química , Fumarato de Formoterol/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biogênese de Organelas , Animais , Respiração Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Túbulos Renais Proximais/citologia , Modelos Moleculares , Conformação Molecular , Consumo de Oxigênio , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Coelhos
10.
J Lipid Res ; 58(7): 1439-1452, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28490444

RESUMO

Acute kidney injury (AKI), resulting from chemotherapeutic agents such as cisplatin, remains an obstacle in the treatment of cancer. Cisplatin-induced AKI involves apoptotic and necrotic cell death, pathways regulated by sphingolipids such as ceramide and glucosylceramide. Results from this study indicate that C57BL/6J mice treated with cisplatin had increased ceramide and hexosylceramide levels in the renal cortex 72 h following cisplatin treatment. Pretreatment of mice with inhibitors of acid sphingomyelinase and de novo ceramide synthesis (amitriptyline and myriocin, respectively) prevented accumulation of ceramides and hexosylceramide in the renal cortex and protected from cisplatin-induced AKI. To determine the role of ceramide metabolism to hexosylceramides in kidney injury, we treated mice with a potent and highly specific inhibitor of glucosylceramide synthase, the enzyme responsible for catalyzing the glycosylation of ceramides to form glucosylceramides. Inhibition of glucosylceramide synthase attenuated the accumulation of the hexosylceramides and exacerbated ceramide accumulation in the renal cortex following treatment of mice with cisplatin. Increasing ceramides and decreasing glucosylceramides in the renal cortex sensitized mice to cisplatin-induced AKI according to markers of kidney function, kidney injury, inflammation, cell stress, and apoptosis. Under conditions of high ceramide generation, data suggest that metabolism of ceramides to glucosylceramides buffers kidney ceramides and helps attenuate kidney injury.-Dupre, T. V., M. A. Doll, P. P. Shah, C. N. Sharp, D. Siow, J. Megyesi, J. Shayman, A. Bielawska, J. Bielawski, L. J. Beverly, M. Hernandez-Corbacho, C. J. Clarke, A. J. Snider, R. G. Schnellmann, L. M. Obeid, Y. A. Hannun, and L. J. Siskind. Inhibiting glucosylceramide synthase exacerbates cisplatin-induced acute kidney injury. J. Lipid Res 2017. 58: 1439-1452.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Cisplatino/efeitos adversos , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Animais , Ceramidas/metabolismo , Córtex Renal/irrigação sanguínea , Córtex Renal/efeitos dos fármacos , Córtex Renal/metabolismo , Masculino , Camundongos , Ratos , Traumatismo por Reperfusão/metabolismo
11.
J Biol Chem ; 291(52): 26850-26859, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27875304

RESUMO

Previous studies have shown that extracellular signal-regulated kinase 1/2 (ERK1/2) directly inhibits mitochondrial function during cellular injury. We evaluated the role of ERK1/2 on the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) gene, a master regulator of mitochondrial function. The potent and specific MEK1/2 inhibitor trametinib rapidly blocked ERK1/2 phosphorylation, decreased cytosolic and nuclear FOXO3a/1 phosphorylation, and increased PGC-1α gene expression and its downstream mitochondrial biogenesis (MB) targets under physiological conditions in the kidney cortex and in primary renal cell cultures. The epidermal growth factor receptor (EGFR) inhibitor erlotinib blocked ERK1/2 phosphorylation and increased PGC-1α gene expression similar to treatment with trametinib, linking EGFR activation and FOXO3a/1 inactivation to the down-regulation of PGC-1α and MB through ERK1/2. Pretreatment with trametinib blocked early ERK1/2 phosphorylation following ischemia/reperfusion kidney injury and attenuated the down-regulation of PGC-1α and downstream target genes. These results demonstrate that ERK1/2 rapidly regulates mitochondrial function through a novel pathway, EGFR/ERK1/2/FOXO3a/1/PGC-1α, under physiological and pathological conditions. As such, ERK1/2 down-regulates mitochondrial function directly by phosphorylation of upstream regulators of PGC-1α and subsequently decreasing MB.


Assuntos
Injúria Renal Aguda/patologia , Regulação da Expressão Gênica , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/fisiopatologia , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Animais , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Rim/citologia , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , PPAR gama/genética , PPAR gama/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação , Coelhos , Transdução de Sinais
12.
Crit Care Med ; 44(8): e711-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27031380

RESUMO

OBJECTIVE: The mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway is an essential component of innate immunity necessary for mediating proinflammatory responses in the setting of sepsis. We previously demonstrated that the mitogen-activated protein kinase 1/2 inhibitor trametinib prevents endotoxin-induced renal injury in mice. We therefore assessed efficacy of trametinib in a more clinically relevant experimental model of sepsis. DESIGN: Controlled in vivo laboratory study. SETTING: University animal research laboratory. SUBJECTS: Male C57BL/6 mice. INTERVENTIONS: Mice were subjected to cecal ligation and puncture to induce sepsis or underwent sham operation as controls. Six hours after cecal ligation and puncture, mice were randomized to four experimental groups as follows: 1) sham control; 2) sham control + trametinib (1 mg/kg, IP); 3) cecal ligation and puncture; and 4) cecal ligation and puncture + trametinib. All animals received buprenorphine (0.05 mg/kg, SC) and imipenem/cilastatin (14 mg/kg, SC) in 1.5 mL of warm saline (40 mL/kg) at the 6-hour time point. Mice were euthanized at 18 hours after induction of cecal ligation and puncture. MEASUREMENTS AND MAIN RESULTS: Trametinib inhibition of mitogen-activated protein kinase/extracellular signal-regulated kinase signaling 6 hours after cecal ligation and puncture attenuated increases in circulating proinflammatory cytokines (tumor necrosis factor-α, interleukin-1ß, interleukin-6, and granulocyte macrophage colony-stimulating factor) and hypothermia at 18 hours. Trametinib also attenuated multiple organ injury as determined by serum creatinine, alanine aminotransferase, lactate dehydrogenase, and creatine kinase. At the organ level, trametinib completely restored peritubular capillary perfusion in the kidney. Restoration of microvascular perfusion was associated with reduced messenger RNA expression of well-characterized markers of proximal tubule injury. mitogen-activated protein kinase/extracellular signal-regulated kinase blockade attenuated cecal ligation and puncture-mediated up-regulation of cytokines (tumor necrosis factor-α, interleukin-1ß) and restored interleukin-6 to control levels in the renal cortex, indicating the protective effects on the proximal tubule occur primarily through modulation of the proinflammatory response in sepsis. CONCLUSIONS: These data reveal that the mitogen-activated protein kinase/extracellular signal-regulated kinase inhibitor trametinib attenuates systemic inflammation and multiple organ damage in a clinically relevant model of sepsis. Because trametinib has been safely used in humans, we propose that this drug might represent a translatable approach to limit organ injury in septic patients.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Inflamação/tratamento farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirimidinonas/farmacologia , Injúria Renal Aguda/fisiopatologia , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência de Múltiplos Órgãos/tratamento farmacológico , Insuficiência de Múltiplos Órgãos/fisiopatologia , RNA Mensageiro/biossíntese , Sepse
13.
Am J Physiol Renal Physiol ; 310(3): F248-58, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26661653

RESUMO

Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer.


Assuntos
Injúria Renal Aguda/prevenção & controle , Cisplatino , Rim/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Suramina/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimiocinas/metabolismo , Citocinas/metabolismo , Citoproteção , Dano ao DNA , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Kidney Int ; 88(6): 1336-1344, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26287315

RESUMO

Recent studies show the importance of mitochondrial dysfunction in the initiation and progression of acute kidney injury (AKI). However, no biomarkers exist linking renal injury to mitochondrial function and integrity. To this end, we evaluated urinary mitochondrial DNA (UmtDNA) as a biomarker of renal injury and function in humans with AKI following cardiac surgery. mtDNA was isolated from the urine of patients following cardiac surgery and quantified by quantitative PCR. Patients were stratified into no AKI, stable AKI, and progressive AKI groups based on Acute Kidney Injury Network (AKIN) staging. UmtDNA was elevated in progressive AKI patients and was associated with progression of patients with AKI at collection to higher AKIN stages. To evaluate the relationship of UmtDNA to measures of renal mitochondrial integrity in AKI, mice were subjected to sham surgery or varying degrees of ischemia followed by 24 h of reperfusion. UmtDNA increased in mice after 10-15 min of ischemia and positively correlated with ischemia time. Furthermore, UmtDNA was predictive of AKI in the mouse model. Finally, UmtDNA levels were negatively correlated with renal cortical mtDNA and mitochondrial gene expression. These translational studies demonstrate that UmtDNA is associated with recovery from AKI following cardiac surgery by serving as an indicator of mitochondrial integrity. Thus UmtDNA may serve as valuable biomarker for the development of mitochondrial-targeted therapies in AKI.

15.
Am J Physiol Renal Physiol ; 309(3): F204-15, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26041445

RESUMO

Glycosphingolipids (GSLs) play a role in insulin resistance and diabetes, but their role in diabetic nephropathy (DN) has received limited attention. We used 9- and 17-wk-old nondiabetic db/m and diabetic db/db mice to examine the role of GSLs in DN. Cerebrosides or monoglycosylated GSLs [hexosylceramides (HexCers); glucosyl- and galactosylceramides] and lactosylceramide (LacCers) were elevated in db/db mouse kidney cortices, specifically in glomeruli, and also in urine. In our recent paper (25), we observed that the kidneys exhibited glomerular hypertrophy and proximal tubular vacuolization and increased fibrosis markers at these time points. Mesangial cells contribute to hyperglycemia-induced glomerular hypertrophy in DN. Hyperglycemic culture conditions, similar to that present in diabetes, were sufficient to elevate mesangial cell HexCers and increase markers of fibrosis, extracellular matrix proteins, and cellular hypertrophy. Inhibition of glucosylceramide synthase or lowering glucose levels decreased markers of fibrosis and extracellular matrix proteins and reversed mesangial cell hypertrophy. Hyperglycemia increased phosphorylated (p)SMAD3 and pAkt levels and reduced phosphatase and tensin homolog levels, which were reversed with glucosylceramide synthase inhibition. These data suggest that inhibition of glucosylceramide synthase reversed mesangial cell hypertrophy through decreased pAkt and pSmad3 and increased pathways responsible for protein degradation. Importantly, urinary GSL levels were higher in patients with DN compared with healthy control subjects, implicating a role for these lipids in human DN. Thus, hyperglycemia in type II diabetes leads to renal dysfunction at least in part by inducing accumulation of HexCers and LacCers in mesangial cells, resulting in fibrosis, extracellular matrix production, and hypertrophy.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Glicoesfingolipídeos/metabolismo , Rim/metabolismo , Células Mesangiais/patologia , Animais , Antígenos CD/metabolismo , Linhagem Celular , Proliferação de Células , Diabetes Mellitus Experimental/patologia , Humanos , Glomérulos Renais/patologia , Túbulos Renais Proximais/patologia , Lactosilceramidas/metabolismo , Células Mesangiais/ultraestrutura , Camundongos , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais , Proteína Smad3/metabolismo
16.
Endocrinology ; 156(6): 2138-49, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25836666

RESUMO

Aldosterone is a steroid hormone important in the regulation of blood pressure. Aberrant production of aldosterone results in the development and progression of diseases including hypertension and congestive heart failure; therefore, a complete understanding of aldosterone production is important for developing more effective treatments. Angiotensin II (AngII) regulates steroidogenesis, in part through its ability to increase intracellular calcium levels. Calcium can activate calpains, proteases classified as typical or atypical based on the presence or absence of penta-EF-hands, which are involved in various cellular responses. We hypothesized that calpain, in particular calpain-10, is activated by AngII in adrenal glomerulosa cells and underlies aldosterone production. Our studies showed that pan-calpain inhibitors reduced AngII-induced aldosterone production in 2 adrenal glomerulosa cell models, primary bovine zona glomerulosa and human adrenocortical carcinoma (HAC15) cells, as well as CYP11B2 expression in the HAC15 cells. Although AngII induced calpain activation in these cells, typical calpain inhibitors had no effect on AngII-elicited aldosterone production, suggesting a lack of involvement of classical calpains in this process. However, an inhibitor of the atypical calpain, calpain-10, decreased AngII-induced aldosterone production. Consistent with this result, small interfering RNA (siRNA)-mediated knockdown of calpain-10 inhibited aldosterone production and CYP11B2 expression, whereas adenovirus-mediated overexpression of calpain-10 resulted in increased AngII-induced aldosterone production. Our results indicate that AngII-induced activation of calpain-10 in glomerulosa cells underlies aldosterone production and identify calpain-10 or its downstream pathways as potential targets for the development of drug therapies for the treatment of hypertension.


Assuntos
Aldosterona/metabolismo , Angiotensina II/farmacologia , Calpaína/metabolismo , Zona Glomerulosa/metabolismo , Animais , Calpaína/antagonistas & inibidores , Bovinos , Linhagem Celular Tumoral , Células Cultivadas , Dipeptídeos/farmacologia , Humanos , Hidrocortisona/metabolismo
17.
Toxicol Sci ; 145(1): 108-17, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25666834

RESUMO

Although the importance of mitochondrial dysfunction in acute kidney injury (AKI) has been documented, noninvasive early biomarkers of mitochondrial damage are needed. We examined urinary ATP synthase subunit ß (ATPSß) as a biomarker of renal mitochondrial dysfunction during AKI. Mice underwent sham surgery or varying degrees (5, 10, or 15 min ischemia) of ischemia/reperfusion (I/R)-induced AKI. Serum creatinine, BUN, and neutrophil gelatinase-associated lipocalin were elevated only in the 15 min I/R group at 24 h. Immunoblot analysis of urinary ATPSß revealed two bands (full length ∼52 kDa and cleaved ∼25 kDa), both confirmed as ATPSß by LC-MS/MS, that increased at 24 h in 10- and 15-min I/R groups. These changes were associated with mitochondrial dysfunction evidenced by reduced renal cortical expression of mitochondrial proteins, ATPSß and COX1, proximal tubular oxygen consumption, and ATP. Furthermore, in the 15-min I/R group, urinary ATPSß was elevated until 72 h before returning to baseline 144 h after reperfusion with recovery of renal function. Evaluation of urinary ATPSß in a nonalcoholic steatohepatitis model of liver injury only revealed cleaved ATPSß, suggesting specificity of full-length ATPSß for renal injury. Immunoblot analyses of patient urine samples collected 36 h after cardiac surgery revealed increased urinary ATPSß levels in patients with postcardiac surgery-induced AKI. LC-MS/MS urinalysis in human subjects with AKI confirmed increased ATPSß. These translational studies provide evidence that ATPSß may be a novel and sensitive urinary biomarker of renal mitochondrial dysfunction and could serve as valuable tool for the testing of potential therapies for AKI and chemical-induced nephrotoxicity.


Assuntos
Injúria Renal Aguda/enzimologia , Biomarcadores/urina , Mitocôndrias/fisiologia , ATPases Mitocondriais Próton-Translocadoras/urina , Injúria Renal Aguda/fisiopatologia , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL
18.
J Pharmacol Exp Ther ; 352(2): 346-57, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25503387

RESUMO

Although disruption of mitochondrial homeostasis and biogenesis (MB) is a widely accepted pathophysiologic feature of sepsis-induced acute kidney injury (AKI), the molecular mechanisms responsible for this phenomenon are unknown. In this study, we examined the signaling pathways responsible for the suppression of MB in a mouse model of lipopolysaccharide (LPS)-induced AKI. Downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of MB, was noted at the mRNA level at 3 hours and protein level at 18 hours in the renal cortex, and was associated with loss of renal function after LPS treatment. LPS-mediated suppression of PGC-1α led to reduced expression of downstream regulators of MB and electron transport chain proteins along with a reduction in renal cortical mitochondrial DNA content. Mechanistically, Toll-like receptor 4 (TLR4) knockout mice were protected from renal injury and disruption of MB after LPS exposure. Immunoblot analysis revealed activation of tumor progression locus 2/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (TPL-2/MEK/ERK) signaling in the renal cortex by LPS. Pharmacologic inhibition of MEK/ERK signaling attenuated renal dysfunction and loss of PGC-1α, and was associated with a reduction in proinflammatory cytokine (e.g., tumor necrosis factor-α [TNF-α], interleukin-1ß) expression at 3 hours after LPS exposure. Neutralization of TNF-α also blocked PGC-1α suppression, but not renal dysfunction, after LPS-induced AKI. Finally, systemic administration of recombinant tumor necrosis factor-α alone was sufficient to produce AKI and disrupt mitochondrial homeostasis. These findings indicate an important role for the TLR4/MEK/ERK pathway in both LPS-induced renal dysfunction and suppression of MB. TLR4/MEK/ERK/TNF-α signaling may represent a novel therapeutic target to prevent mitochondrial dysfunction and AKI produced by sepsis.


Assuntos
Injúria Renal Aguda/metabolismo , DNA Mitocondrial/metabolismo , Endotoxinas/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptor 4 Toll-Like/metabolismo , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/enzimologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Córtex Renal/efeitos dos fármacos , Córtex Renal/enzimologia , Córtex Renal/metabolismo , Testes de Função Renal , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Receptor 4 Toll-Like/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
19.
Biochim Biophys Acta ; 1853(2): 348-60, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25447550

RESUMO

Understanding the processes of mitochondrial dynamics (fission, fusion, biogenesis, and mitophagy) has been hampered by the lack of automated, deterministic methods to measure mitochondrial morphology from microscopic images. A method to quantify mitochondrial morphology and function is presented here using a commercially available automated high-content wide-field fluorescent microscopy platform and R programming-language-based semi-automated data analysis to achieve high throughput morphological categorization (puncta, rod, network, and large & round) and quantification of mitochondrial membrane potential. In conjunction with cellular respirometry to measure mitochondrial respiratory capacity, this method detected that increasing concentrations of toxicants known to directly or indirectly affect mitochondria (t-butyl hydroperoxide [TBHP], rotenone, antimycin A, oligomycin, ouabain, and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone [FCCP]), decreased mitochondrial networked areas in cultured 661w cells to 0.60-0.80 at concentrations that inhibited respiratory capacity to 0.20-0.70 (fold change compared to vehicle). Concomitantly, mitochondrial swelling was increased from 1.4- to 2.3-fold of vehicle as indicated by changes in large & round areas in response to TBHP, oligomycin, or ouabain. Finally, the automated identification of mitochondrial location enabled accurate quantification of mitochondrial membrane potential by measuring intramitochondrial tetramethylrhodamine methyl ester (TMRM) fluorescence intensity. Administration of FCCP depolarized and administration of oligomycin hyperpolarized mitochondria, as evidenced by changes in intramitochondrial TMRM fluorescence intensities to 0.33- or 5.25-fold of vehicle control values, respectively. In summary, this high-content imaging method accurately quantified mitochondrial morphology and membrane potential in hundreds of thousands of cells on a per-cell basis, with sufficient throughput for pharmacological or toxicological evaluation.


Assuntos
Inteligência Artificial , Imageamento Tridimensional/métodos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Oxidantes/toxicidade , Fenótipo , ATPase Trocadora de Sódio-Potássio/metabolismo , Estresse Fisiológico/efeitos dos fármacos , terc-Butil Hidroperóxido/metabolismo
20.
Am J Physiol Renal Physiol ; 307(4): F435-44, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24990892

RESUMO

While disruption of energy production is an important contributor to renal injury, metabolic alterations in sepsis-induced AKI remain understudied. We assessed changes in renal cortical glycolytic metabolism in a mouse model of sepsis-induced AKI. A specific and rapid increase in hexokinase (HK) activity (∼2-fold) was observed 3 h after LPS exposure and maintained up to 18 h, in association with a decline in renal function as measured by blood urea nitrogen (BUN). LPS-induced HK activation occurred independently of HK isoform expression or mitochondrial localization. No other changes in glycolytic enzymes were observed. LPS-mediated HK activation was not sufficient to increase glycolytic flux as indicated by reduced or unchanged pyruvate and lactate levels in the renal cortex. LPS-induced HK activation was associated with increased glucose-6-phosphate dehydrogenase activity but not glycogen production. Mechanistically, LPS-induced HK activation was attenuated by pharmacological inhibitors of the EGF receptor (EGFR) and Akt, indicating that EGFR/phosphatidylinositol 3-kinase/Akt signaling is responsible. Our findings reveal LPS rapidly increases renal cortical HK activity in an EGFR- and Akt-dependent manner and that HK activation is linked to increased pentose phosphate pathway activity.


Assuntos
Injúria Renal Aguda/fisiopatologia , Receptores ErbB/fisiologia , Hexoquinase/metabolismo , Córtex Renal/fisiologia , Via de Pentose Fosfato/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Gefitinibe , Glucosefosfato Desidrogenase/metabolismo , Glicólise/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Córtex Renal/efeitos dos fármacos , Lipopolissacarídeos , Masculino , Camundongos , Fosfatidilinositol 3-Quinases , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA