Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(7): 2921-2933, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38507252

RESUMO

Accurately predicting protein behavior across diverse pH environments remains a significant challenge in biomolecular simulations. Existing constant-pH molecular dynamics (CpHMD) algorithms are limited to fixed-charge force fields, hindering their application to biomolecular systems described by permanent atomic multipoles or induced dipoles. This work overcomes these limitations by introducing the first polarizable CpHMD algorithm in the context of the Atomic Multipole Optimized Energetics for Biomolecular Applications (AMOEBA) force field. Additionally, our implementation in the open-source Force Field X (FFX) software has the unique ability to handle titration state changes for crystalline systems including flexible support for all 230 space groups. The evaluation of constant-pH molecular dynamics (CpHMD) with the AMOEBA force field was performed on 11 crystalline peptide systems that span the titrating amino acids (Asp, Glu, His, Lys, and Cys). Titration states were correctly predicted for 15 out of the 16 amino acids present in the 11 systems, including for the coordination of Zn2+ by cysteines. The lone exception was for a HIS-ALA peptide where CpHMD predicted both neutral histidine tautomers to be equally populated, whereas the experimental model did not consider multiple conformers and diffraction data are unavailable for rerefinement. This work demonstrates the promise polarizable CpHMD simulations for pKa predictions, the study of biochemical mechanisms such as the catalytic triad of proteases, and for improved protein-ligand binding affinity accuracy in the context of pharmaceutical lead optimization.


Assuntos
Amoeba , Proteínas/química , Peptídeos , Simulação de Dinâmica Molecular , Concentração de Íons de Hidrogênio , Aminoácidos
2.
Front Oncol ; 13: 1229507, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869077

RESUMO

Replication Protein A (RPA) is single-strand DNA binding protein that plays a key role in the replication and repair of DNA. RPA is a heterotrimer made of 3 subunits - RPA1, RPA2, and RPA3. Germline pathogenic variants affecting RPA1 were recently described in patients with Telomere Biology Disorders (TBD), also known as dyskeratosis congenita or short telomere syndrome. Premature telomere shortening is a hallmark of TBD and results in bone marrow failure and predisposition to hematologic malignancies. Building on the finding that somatic mutations in RPA subunit genes occur in ~1% of cancers, we hypothesized that germline RPA alterations might be enriched in human cancers. Because germline RPA1 mutations are linked to early onset TBD with predisposition to myelodysplastic syndromes, we interrogated pediatric cancer cohorts to define the prevalence and spectrum of rare/novel and putative damaging germline RPA1, RPA2, and RPA3 variants. In this study of 5,993 children with cancer, 75 (1.25%) harbored heterozygous rare (non-cancer population allele frequency (AF) < 0.1%) variants in the RPA heterotrimer genes, of which 51 cases (0.85%) had ultra-rare (AF < 0.005%) or novel variants. Compared with Genome Aggregation Database (gnomAD) non-cancer controls, there was significant enrichment of ultra-rare and novel RPA1, but not RPA2 or RPA3, germline variants in our cohort (adjusted p-value < 0.05). Taken together, these findings suggest that germline putative damaging variants affecting RPA1 are found in excess in children with cancer, warranting further investigation into the functional role of these variants in oncogenesis.

3.
JAMA Ophthalmol ; 141(9): 872-879, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589989

RESUMO

Importance: The p.Asp67Tyr genetic variant in the GJA3 gene is responsible for congenital cataracts in a family with a high incidence of glaucoma following cataract surgery. Objective: To describe the clinical features of a family with a strong association between congenital cataracts and glaucoma following cataract surgery secondary to a genetic variant in the GJA3 gene (NM_021954.4:c.199G>T, p.Asp67Tyr). Design, Setting, and Participants: This was a retrospective, observational, case series, genetic association study from the University of Iowa spanning 61 years. Examined were the ophthalmic records from 1961 through 2022 of the family members of a 4-generation pedigree with autosomal dominant congenital cataracts. Main Outcomes and Measures: Frequency of glaucoma following cataract surgery and postoperative complications among family members with congenital cataract due to the p.Asp67Tyr GJA3 genetic variant. Results: Medical records were available from 11 of 12 family members (7 male [63.6%]) with congenital cataract with a mean (SD) follow-up of 30 (21.7) years (range, 0.2-61 years). Eight of 9 patients with congenital cataracts developed glaucoma, and 8 of 8 patients who had cataract surgery at age 2 years or younger developed glaucoma following cataract surgery. The only family member with congenital cataracts who did not develop glaucoma had delayed cataract surgery until 12 and 21 years of age. Five of 11 family members (45.5%) had retinal detachments after cataract extraction and vitrectomy. No patients developed retinal detachments after prophylactic 360-degree endolaser. Conclusions and Relevance: The GJA3 genetic variant, p.Asp67Tyr, was identified in a 4-generation congenital cataract pedigree from Iowa. This report suggests that patients with congenital cataract due to some GJA3 genetic variants may be at especially high risk for glaucoma following cataract surgery. Retinal detachments after cataract extraction in the first 2 years of life were also common in this family, and prophylactic retinal endolaser may be indicated at the time of surgery.


Assuntos
Extração de Catarata , Catarata , Conexinas , Glaucoma , Descolamento Retiniano , Criança , Pré-Escolar , Humanos , Masculino , Catarata/genética , Extração de Catarata/efeitos adversos , Variação Genética , Glaucoma/genética , Retina , Estudos Retrospectivos , Conexinas/genética
4.
Curr Eye Res ; 45(1): 91-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361967

RESUMO

Purpose: Aniridia is a rare congenital eye disease, characterized by a constellation of symptoms including hypoplastic irides, foveal hypoplasia, early cataract, corneal stem cell deficiency, and glaucoma. Large chromosomal deletions spanning the PAX6 gene cause WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and intellectual disability [formerly called mental retardation]). We describe clinical and genetic studies of a three-generation pedigree with aniridia along with additional systemic conditions (morbid obesity, diabetes) suggesting the possibility of a contiguous-gene syndrome like WAGR.Methods: Clinical records were obtained and DNA was prepared from blood samples from three of the four patients and tested for mutations in the coding sequences of the PAX6 gene. The index patient also had cardiomyopathy and was tested for known cardiomyopathy genetic mutations using a next-generation DNA sequencing assay.Results: We discovered a novel intragenic PAX6 mutation, a 16 bp heterozygous deletion c.203delCCAGGGCAATCGGTGG, with Sanger sequencing that is the likely cause of autosomal dominant aniridia in this pedigree. This PAX6 deletion causes a frameshift in predicted protein translation and a subsequent premature termination, p.Pro68Leufs*6. The PAX6 deletion was detected in all three available family members with aniridia, the index patient, his mother, and his maternal aunt but was not observed in the Exome Aggregation Consortium (ExAC) database. Targeted sequencing of known cardiomyopathy genes in the index patient identified a second mutation, a 1.7 Mp deletion that spans the MYBPC3 gene.Conclusions: We report a pedigree with aniridia and other systemic abnormalities that were initially suspicious for a contiguous-gene syndrome like WAGR. However, genetic analysis of the pedigree revealed two independent genetic abnormalities on chromosome 11p: 1) a novel PAX6 mutation, and 2) a large chromosome deletion spanning MYBPC3, a known cardiomyopathy gene. It is unclear if morbid obesity and type II diabetes mellitus have a related genetic cause.


Assuntos
Aniridia/genética , DNA/genética , Diabetes Mellitus Tipo 2/genética , Mutação , Obesidade Mórbida/genética , Fator de Transcrição PAX6/genética , Aniridia/metabolismo , DNA/metabolismo , Análise Mutacional de DNA , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Masculino , Obesidade Mórbida/metabolismo , Fator de Transcrição PAX6/metabolismo , Linhagem , Fenótipo
5.
Clin Obstet Gynecol ; 63(1): 109-119, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31876640

RESUMO

In our proof-of-concept study of 1 patient with stage IIIC carcinosarcoma of the ovary, we discovered a rare mutation in the tumor suppressor, TP53, that results in the deletion of N131. Immunofluorescence imaging of the organoid culture revealed hyperstaining of p53 protein. Computational modeling suggests this residue is important for maintaining protein conformation. Drug screening identified the combination of a proteasome inhibitor with a histone deacetylase inhibitor as the most effective treatment. These data provide evidence for the successful culture of a patient tumor and analysis of drug response ex vivo.


Assuntos
Carcinoma Epitelial do Ovário/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Proteína Supressora de Tumor p53/genética , Feminino , Humanos , Organoides/metabolismo , Modelagem Computacional Específica para o Paciente
6.
Chem Sci ; 9(4): 956-972, 2018 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-29732110

RESUMO

We present Tinker-HP, a massively MPI parallel package dedicated to classical molecular dynamics (MD) and to multiscale simulations, using advanced polarizable force fields (PFF) encompassing distributed multipoles electrostatics. Tinker-HP is an evolution of the popular Tinker package code that conserves its simplicity of use and its reference double precision implementation for CPUs. Grounded on interdisciplinary efforts with applied mathematics, Tinker-HP allows for long polarizable MD simulations on large systems up to millions of atoms. We detail in the paper the newly developed extension of massively parallel 3D spatial decomposition to point dipole polarizable models as well as their coupling to efficient Krylov iterative and non-iterative polarization solvers. The design of the code allows the use of various computer systems ranging from laboratory workstations to modern petascale supercomputers with thousands of cores. Tinker-HP proposes therefore the first high-performance scalable CPU computing environment for the development of next generation point dipole PFFs and for production simulations. Strategies linking Tinker-HP to Quantum Mechanics (QM) in the framework of multiscale polarizable self-consistent QM/MD simulations are also provided. The possibilities, performances and scalability of the software are demonstrated via benchmarks calculations using the polarizable AMOEBA force field on systems ranging from large water boxes of increasing size and ionic liquids to (very) large biosystems encompassing several proteins as well as the complete satellite tobacco mosaic virus and ribosome structures. For small systems, Tinker-HP appears to be competitive with the Tinker-OpenMM GPU implementation of Tinker. As the system size grows, Tinker-HP remains operational thanks to its access to distributed memory and takes advantage of its new algorithmic enabling for stable long timescale polarizable simulations. Overall, a several thousand-fold acceleration over a single-core computation is observed for the largest systems. The extension of the present CPU implementation of Tinker-HP to other computational platforms is discussed.

7.
Mol Vis ; 23: 179-184, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28400699

RESUMO

PURPOSE: Lacrimo-auriculo-dento-digital (LADD) syndrome is an autosomal dominant disorder displaying variable expression of multiple congenital anomalies including hypoplasia or aplasia of the lacrimal and salivary systems causing abnormal tearing and dry mouth. Mutations in the FGF10, FGFR2, and FGFR3 genes were found to cause some cases of LADD syndrome in prior genetic studies. The goal of this study is to identify the genetic basis of a case of LADD syndrome with glaucoma and thin central corneal thickness (CCT). METHODS: Whole exome sequencing was performed, and previously described disease-causing genes (FGF10, FGFR2, and FGFR3) were first evaluated for mutations. Fifty-eight additional prioritized candidate genes were identified by searching gene annotations for features of LADD syndrome. The potential pathogenicity of the identified mutations was assessed by determining their frequency in large public exome databases; through sequence analysis using the Blosum62 matrix, PolyPhen2, and SIFT algorithms; and through homology analyses. A structural analysis of the effects of the top candidate mutation in tumor protein 63 (TP63) was also conducted by superimposing the mutation over the solved crystal structure. RESULTS: No mutations were detected in FGF10, FGFR2, or FGFR3. The LADD syndrome patient's exome data was searched for mutations in the 58 candidate genes and only one mutation was detected, an Arg343Trp mutation in the tumor protein 63 (TP63) gene. This TP63 mutation is absent from the gnomAD sequence database. Analysis of the Arg343Trp mutation with Blosum62, PolyPhen2, and SIFT all suggest it is pathogenic. This arginine residue is highly conserved in orthologous genes. Finally, crystal structure analysis showed that the Arg343Trp mutation causes a significant alteration in the structure of TP63's DNA binding domain. CONCLUSIONS: We report a patient with no mutations in known LADD syndrome genes (FGF10, FGFR2, and FGFR3). Our analysis provides strong evidence that the Arg343Trp mutation in TP63 caused LADD syndrome in our patient and that TP63 is a fourth gene contributing to this condition. TP63 encodes a transcription factor involved in the development and differentiation of tissues affected by LADD syndrome. These data suggest that TP63 is a novel LADD syndrome gene and may also influence corneal thickness and risk for open-angle glaucoma.


Assuntos
Anormalidades Múltiplas/genética , Predisposição Genética para Doença , Glaucoma/complicações , Glaucoma/genética , Perda Auditiva/complicações , Perda Auditiva/genética , Doenças do Aparelho Lacrimal/complicações , Doenças do Aparelho Lacrimal/genética , Sindactilia/complicações , Sindactilia/genética , Anormalidades Dentárias/complicações , Anormalidades Dentárias/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Sequência de Aminoácidos , Sequência Conservada , Humanos , Modelos Moleculares , Fatores de Transcrição/química , Proteínas Supressoras de Tumor/química
8.
Curr Pharm Des ; 18(9): 1173-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22316156

RESUMO

Due to their role in cellular signaling mitogen activated protein (MAP) kinases represent targets of pharmaceutical interest. However, the majority of known MAP kinase inhibitors compete with cellular ATP and target an ATP binding pocket that is highly conserved in the 500 plus representatives of the human protein kinase family. Here we review progress toward the development of non-ATP competitive MAP kinase inhibitors for the extracellular signal regulated kinases (ERK1/2), the c-jun N-terminal kinases (JNK1/2/3) and the p38 MAPKs (α, ß, γ, and δ). Special emphasis is placed on the role of computational methods in the drug discovery process for MAP kinases. Topics include recent advances in X-ray crystallography theory that improve the MAP kinase structures essential to structurebased drug discovery, the use of molecular dynamics to understand the conformational heterogeneity of the activation loop and inhibitors discovered by virtual screening. The impact of an advanced polarizable force field such as AMOEBA used in conjunction with sophisticated kinetic and thermodynamic simulation methods is also discussed.


Assuntos
Desenho de Fármacos , Descoberta de Drogas/métodos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Simulação por Computador , Cristalografia por Raios X , Sistemas de Liberação de Medicamentos , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA