Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679046

RESUMO

Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.

2.
New Phytol ; 232(2): 818-834, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34240433

RESUMO

Climate change is increasing insect pressure and forcing plants to adapt. Although chemotypic differentiation and phenotypic plasticity in spatially separated tree populations are known for decades, understanding their importance in herbivory resistance across forests remains challenging. We studied four oak forest stands in Germany using nontarget metabolomics, elemental analysis, and chemometrics and mapped the leaf metabolome of herbivore-resistant (T-) and herbivore-susceptible (S-) European oaks (Quercus robur) to Tortrix viridana, an oak pest that causes severe forest defoliation. Among the detected metabolites, we identified reliable metabolic biomarkers to distinguish S- and T-oak trees. Chemotypic differentiation resulted in metabolic shifts of primary and secondary leaf metabolism. Across forests, T-oaks allocate resources towards constitutive chemical defense enriched of polyphenolic compounds, e.g. the flavonoids kaempferol, kaempferol and quercetin glucosides, while S-oaks towards growth-promoting substances such as carbohydrates and amino-acid derivatives. This extensive work across natural forests shows that oaks' resistance and susceptibility to herbivory are linked to growth-defense trade-offs of leaf metabolism. The discovery of biomarkers and the developed predictive model pave the way to understand Quercus robur's susceptibility to herbivore attack and to support forest management, contributing to the preservation of oak forests in Europe.


Assuntos
Quercus , Animais , Ecótipo , Florestas , Herbivoria , Árvores
3.
Oecologia ; 197(4): 885-902, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33420520

RESUMO

Plant isoprene emissions are known to contribute to abiotic stress tolerance, especially during episodes of high temperature and drought, and during cellular oxidative stress. Recent studies have shown that genetic transformations to add or remove isoprene emissions cause a cascade of cellular modifications that include known signaling pathways, and interact to remodel adaptive growth-defense tradeoffs. The most compelling evidence for isoprene signaling is found in the shikimate and phenylpropanoid pathways, which produce salicylic acid, alkaloids, tannins, anthocyanins, flavonols and other flavonoids; all of which have roles in stress tolerance and plant defense. Isoprene also influences key gene expression patterns in the terpenoid biosynthetic pathways, and the jasmonic acid, gibberellic acid and cytokinin signaling networks that have important roles in controlling inducible defense responses and influencing plant growth and development, particularly following defoliation. In this synthesis paper, using past studies of transgenic poplar, tobacco and Arabidopsis, we present the evidence for isoprene acting as a metabolite that coordinates aspects of cellular signaling, resulting in enhanced chemical defense during periods of climate stress, while minimizing costs to growth. This perspective represents a major shift in our thinking away from direct effects of isoprene, for example, by changing membrane properties or quenching ROS, to indirect effects, through changes in gene expression and protein abundances. Recognition of isoprene's role in the growth-defense tradeoff provides new perspectives on evolution of the trait, its contribution to plant adaptation and resilience, and the ecological niches in which it is most effective.


Assuntos
Antocianinas , Hemiterpenos , Butadienos , Folhas de Planta
4.
Plant Cell Environ ; 38(5): 892-904, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24738572

RESUMO

Plants have to cope with various abiotic stresses including UV-B radiation (280-315 nm). UV-B radiation is perceived by a photoreceptor, triggers morphological responses and primes plant defence mechanisms such as antioxidant levels, photoreapir or accumulation of UV-B screening pigments. As poplar is an important model system for trees, we elucidated the influence of UV-B on overall metabolite patterns in poplar leaves grown under high UV-B radiation. Combining non-targeted metabolomics with gas exchange analysis and confocal microscopy, we aimed understanding how UV-B radiation triggers metabolome-wide changes, affects isoprene emission, photosynthetic performance, epidermal light attenuation and finally how isoprene-free poplars adjust their metabolome under UV-B radiation. Exposure to UV-B radiation caused a comprehensive rearrangement of the leaf metabolome. Several hundreds of metabolites were up- and down-regulated over various pathways. Our analysis, revealed the up-regulation of flavonoids, anthocyanins and polyphenols and the down-regulation of phenolic precursors in the first 36 h of UV-B treatment. We also observed a down-regulation of steroids after 12 h. The accumulation of phenolic compounds leads to a reduced light transmission in UV-B-exposed plants. However, the accumulation of phenolic compounds was reduced in non-isoprene-emitting plants suggesting a metabolic- or signalling-based interaction between isoprenoid and phenolic pathways.


Assuntos
Hemiterpenos/metabolismo , Fotossíntese/efeitos da radiação , Populus/metabolismo , Populus/efeitos da radiação , Butadienos , Metaboloma , Metabolômica , Microscopia Confocal , Pentanos , Fenóis/metabolismo , Populus/genética
5.
PLoS One ; 9(9): e106886, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25192423

RESUMO

Protein S-nitrosylation, the covalent binding of nitric oxide (NO) to protein cysteine residues, is one of the main mechanisms of NO signaling in plant and animal cells. Using a combination of the biotin switch assay and label-free LC-MS/MS analysis, we revealed the S-nitroso-proteome of the woody model plant Populus x canescens. Under normal conditions, constitutively S-nitrosylated proteins in poplar leaves and calli comprise all aspects of primary and secondary metabolism. Acute ozone fumigation was applied to elicit ROS-mediated changes of the S-nitroso-proteome. This treatment changed the total nitrite and nitrosothiol contents of poplar leaves and affected the homeostasis of 32 S-nitrosylated proteins. Multivariate data analysis revealed that ozone exposure negatively affected the S-nitrosylation status of leaf proteins: 23 proteins were de-nitrosylated and 9 proteins had increased S-nitrosylation content compared to the control. Phenylalanine ammonia-lyase 2 (log2[ozone/control] = -3.6) and caffeic acid O-methyltransferase (-3.4), key enzymes catalyzing important steps in the phenylpropanoid and subsequent lignin biosynthetic pathways, respectively, were de-nitrosylated upon ozone stress. Measuring the in vivo and in vitro phenylalanine ammonia-lyase activity indicated that the increase of the phenylalanine ammonia-lyase activity in response to acute ozone is partly regulated by de-nitrosylation, which might favor a higher metabolic flux through the phenylpropanoid pathway within minutes after ozone exposure.


Assuntos
Compostos Nitrosos/metabolismo , Ozônio/farmacologia , Proteínas de Plantas/metabolismo , Populus/efeitos dos fármacos , Populus/metabolismo , Proteoma/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Metiltransferases/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Compostos Nitrosos/análise , Fenilalanina Amônia-Liase/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/análise , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteoma/metabolismo , S-Nitrosotióis/análise , S-Nitrosotióis/química , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
6.
Plant Cell ; 25(11): 4737-54, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24220631

RESUMO

Aldoximes are known as floral and vegetative plant volatiles but also as biosynthetic intermediates for other plant defense compounds. While the cytochrome P450 monooxygenases (CYP) from the CYP79 family forming aldoximes as biosynthetic intermediates have been intensively studied, little is known about the enzymology of volatile aldoxime formation. We characterized two P450 enzymes, CYP79D6v3 and CYP79D7v2, which are involved in herbivore-induced aldoxime formation in western balsam poplar (Populus trichocarpa). Heterologous expression in Saccharomyces cerevisiae revealed that both enzymes produce a mixture of different aldoximes. Knockdown lines of CYP79D6/7 in gray poplar (Populus × canescens) exhibited a decreased emission of aldoximes, nitriles, and alcohols, emphasizing that the CYP79s catalyze the first step in the formation of a complex volatile blend. Aldoxime emission was found to be restricted to herbivore-damaged leaves and is closely correlated with CYP79D6 and CYP79D7 gene expression. The semi-volatile phenylacetaldoxime decreased survival and weight gain of gypsy moth (Lymantria dispar) caterpillars, suggesting that aldoximes may be involved in direct defense. The wide distribution of volatile aldoximes throughout the plant kingdom and the presence of CYP79 genes in all sequenced genomes of angiosperms suggest that volatile formation mediated by CYP79s is a general phenomenon in the plant kingdom.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Herbivoria , Populus/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Álcoois/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Genoma de Planta , Mortalidade , Mariposas/efeitos dos fármacos , Mariposas/crescimento & desenvolvimento , Mariposas/fisiologia , Nitrilas/metabolismo , Oximas/metabolismo , Oximas/farmacologia , Fenilalanina/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Compostos Orgânicos Voláteis/análise
7.
Plant Cell Environ ; 35(12): 2192-207, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22632165

RESUMO

The indirect defences of plants are comprised of herbivore-induced plant volatiles (HIPVs) that among other things attract the natural enemies of insects. However, the actual extent of the benefits of HIPV emissions in complex co-evolved plant-herbivore systems is only poorly understood. The observation that a few Quercus robur L. trees constantly tolerated (T-oaks) infestation by a major pest of oaks (Tortrix viridana L.), compared with heavily defoliated trees (susceptible: S-oaks), lead us to a combined biochemical and behavioural study. We used these evidently different phenotypes to analyse whether the resistance of T-oaks to the herbivore was dependent on the amount and scent of HIPVs and/or differences in non-volatile polyphenolic leaf constituents (as quercetin-, kaempferol- and flavonol glycosides). In addition to non-volatile metabolic differences, typically defensive HIPV emissions differed between S-oaks and T-oaks. Female moths were attracted by the blend of HIPVs from S-oaks, showing significantly higher amounts of (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT) and (E)-ß-ocimene and avoid T-oaks with relative high fraction of the sesquiterpenes α-farnesene and germacrene D. Hence, the strategy of T-oaks exhibiting directly herbivore-repellent HIPV emissions instead of high emissions of predator-attracting HIPVs of the S-oaks appears to be the better mechanism for avoiding defoliation.


Assuntos
Mariposas/fisiologia , Quercus/fisiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Cromatografia Gasosa , Comportamento Alimentar , Feminino , Espectrometria de Massas , Quercus/parasitologia
8.
Physiol Plant ; 104(2): 248-254, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28244603

RESUMO

To study the role of low UV-B radiation in modulating the response of antioxidants to ozone, 4-year-old pine (Pinus sylvestris L.) and spruce (Picea abies L.) seedlings potted in natural soil, were exposed in phytochambers to fluctuating ozone concentrations between 9 and 113 nl 1-1 according to field data recorded at Mt Wank (1175 m above sea level, Bavaria, Germany) and two-times ambient O3 levels. UV-B radiation was either added at a biologically effective level of ca 1.2 kJ m-2 day-1 , which is close to that found in March at Mt Wank, or was excluded by filters (<0.08 kJ m-2 day-1 ). After one growth phase current-year needles were collected and analysed for antioxidative enzyme activities (superoxide dismutase, SOD, EC 1.15.1.1; catalase, CAT, EC 1.11.1.6; guaiacol peroxidase, POD, EC 1.11.1.7) and soluble antioxidants (ascorbate, glutathione). CAT, POD, ascorbate and glutathione, but not SOD, were increased in needles of both species in response to twice ambient O3 levels. UV-B radiation in the presence of ambient O3 caused an increase in total SOD activity in spruce but had no effects on antioxidants in pine. Twice ambient O3 levels together with low UV-B radiation counteracted the O3 -induced increases in ascorbate and CAT in pine but not in spruce. Under these conditions spruce needles showed the highest antioxidative protection and revealed no indication of lipid peroxidation. Pine needles exposed to UV-B and elevated O3 levels showed elevated lipid peroxidation and a 5-fold increase in dehydroascorbate, suggesting that this species was less protected and suffered higher oxidative stress than spruce.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA