Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol Methods ; 526: 113617, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38215900

RESUMO

Immunotherapy using TCR and especially CAR transgenic T cells is a rapidly advancing field with the potential to become standard of care for the treatment of multiple diseases. While all current FDA approved CAR T cell products are generated using lentiviral gene transfer, extensive work is put into CRISPR/Cas mediated gene delivery to develop the next generation of safer and more potent cell products. One limitation of all editing systems is the size restriction of the knock-in cargo. Targeted integration under control of an endogenous promotor and/or signaling cascades opens the possibility to reduce CAR gene size to absolute minimum. Here we demonstrate that a first-generation CAR payload can be reduced to its minimum component - the antigen-binding domain - by targeted integration under control of the CD3ε promoter generating a CAR-CD3ε fusion protein that exploits the endogenous TCR signaling cascade. Miniaturizing CAR payload in this way results in potent CAR activity while simultaneously retaining the primary antigen recognition function of the TCR. Introducing CAR-specificity using a CAR binder only while maintaining endogenous TCR function may be an appealing design for future autologous CAR T cell therapies.


Assuntos
Imunoterapia Adotiva , Linfócitos T , Imunoterapia Adotiva/métodos , Imunoterapia , Receptores de Antígenos de Linfócitos T
2.
Immunobiology ; 228(5): 152720, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541134

RESUMO

INTRODUCTION: Treatment of severe COVID-19 disease can be challenging in immunocompromized patients due to newly emerging virus variants of concern (VOC) escaping the humoral response. Thus, T cells recognizing to date unmutated epitopes are not only relevant for patients' immune responses against VOC, but might also serve as a therapeutic option for patients with severe COVID-19 disease in the future, e.g. following allogenic stem cell transplantation. METHODS: To this purpose, the activation, cytokine profile and specificity of T-cell clones against unmutated and omicron Spike (S)-protein was analyzed, HLA restriction was determined and most promising T-cell receptor (TCR) was introduced into allogeneic T cells via CRISPR/Cas9-mediated orthotopic TCR replacement. Finally, T-cell responses of engineered T cells was determined and durability of the TCR replacement measured. PERSPECTIVE: SARS-CoV-2 specific engineered T cells recognizing a genomically stable region of the S-protein of all SARS-CoV 2 variants were successfully generated. Such transgenic T cells exhibit favorable effector functions and provide a treatment option of immunocompromised COVID-19 patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Animais , COVID-19/terapia , Receptores de Antígenos de Linfócitos T/genética , Animais Geneticamente Modificados , Epitopos
3.
J Autoimmun ; 139: 103071, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356345

RESUMO

Butyrophilins are surface receptors belonging to the immunoglobulin superfamily. While several members of the butyrophilin family have been implicated in the development of unconventional T cells, butyrophilin 2a2 (Btn2a2) has been shown to inhibit conventional T cell activation. Here, we demonstrate that in steady state, the primary source of Btn2a2 are thymic epithelial cells (TEC). Absence of Btn2a2 alters thymic T cell maturation and bypasses central tolerance mechanisms. Furthermore, Btn2a2-/- mice develop spontaneous autoimmunity resembling human primary Sjögren's Syndrome (pSS), including formation of tertiary lymphoid structures (TLS) in target organs. Ligation of Btn2a2 on developing thymocytes is associated with reduced TCR signaling and CD5 levels, while absence of Btn2a2 results in increased TCR signaling and CD5 levels. These results define a novel role for Btn2a2 in promoting central tolerance by modulating TCR signaling strength and indicate a potential mechanism of pSS development.


Assuntos
Doenças Autoimunes , Tolerância Central , Camundongos , Humanos , Animais , Butirofilinas/genética , Timo , Células Epiteliais , Receptores de Antígenos de Linfócitos T/genética
4.
Commun Biol ; 6(1): 604, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277433

RESUMO

CAR T cell therapy is a rapidly growing area of oncological treatments having a potential of becoming standard care for multiple indications. Coincidently, CRISPR/Cas gene-editing technology is entering next-generation CAR T cell product manufacturing with the promise of more precise and more controllable cell modification methodology. The intersection of these medical and molecular advancements creates an opportunity for completely new ways of designing engineered cells to help overcome current limitations of cell therapy. In this manuscript we present proof-of-concept data for an engineered feedback loop. We manufactured activation-inducible CAR T cells with the help of CRISPR-mediated targeted integration. This new type of engineered T cells expresses the CAR gene dependent on their activation status. This artifice opens new possibilities to regulate CAR T cell function both in vitro and in vivo. We believe that such a physiological control system can be a powerful addition to the currently available toolbox of next-generation CAR constructs.


Assuntos
Receptores de Antígenos Quiméricos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Sistemas CRISPR-Cas , Edição de Genes/métodos , Imunoterapia Adotiva/métodos , Linfócitos T/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(10): e2200626120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853939

RESUMO

Engagement of the inhibitory T cell receptor programmed cell death protein 1 (PD-1) associates with dysfunctional states of pathogen- or tumor-specific T cells. Accordingly, systemic antibody-mediated blockade of PD-1 has become a central target for immunotherapies but is also associated with severe toxicities due to loss of peripheral tolerance. Therefore, selective ablation of PD-1 expression on adoptively transferred T cells through direct genetic knockout (KO) is currently being explored as an alternative therapeutic approach. However, since PD-1 might also be required for the regulation of physiological T cell function and differentiation, the suitability of PD-1 as an engineering target is controversial. In this study, we systematically investigated the maintenance of T cell functionality after CRISPR/Cas9-mediated PD-1 KO in vivo during and after acute and chronic antigen encounter. Under all tested conditions, PD-1 ablation preserved the persistence, differentiation, and memory formation of adoptively transferred receptor transgenic T cells. Functional PD-1 KO T cells expressing chimeric antigen receptors (CARs) targeting CD19 could be robustly detected for over 390 d in a syngeneic immunocompetent mouse model, in which constant antigen exposure was provided by continuous B cell renewal, representing the longest in vivo follow-up of CAR-T cells described to date. PD-1 KO CAR-T cells showed no evidence for malignant transformation during the entire observation period. Our data demonstrate that genetic ablation of PD-1 does not impair functionality and longevity of adoptively transferred T cells per se and therefore may be pursued more generally in engineered T cell-based immunotherapy to overcome a central immunosuppressive axis.


Assuntos
Receptor de Morte Celular Programada 1 , Linfócitos T , Animais , Camundongos , Receptor de Morte Celular Programada 1/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais Geneticamente Modificados , Anticorpos Bloqueadores
6.
Nat Immunol ; 24(1): 174-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36564464

RESUMO

The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.


Assuntos
Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Linfócitos T Citotóxicos , Camundongos , Animais , Linfócitos T Citotóxicos/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Antígenos CD4 , Transdução de Sinais , Receptores de Antígenos de Linfócitos T/metabolismo , Antígenos CD8/metabolismo
7.
Sci Immunol ; 8(79): eade2798, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36548397

RESUMO

RNA vaccines are efficient preventive measures to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. High levels of neutralizing SARS-CoV-2 antibodies are an important component of vaccine-induced immunity. Shortly after the initial two mRNA vaccine doses, the immunoglobulin G (IgG) response mainly consists of the proinflammatory subclasses IgG1 and IgG3. Here, we report that several months after the second vaccination, SARS-CoV-2-specific antibodies were increasingly composed of noninflammatory IgG4, which were further boosted by a third mRNA vaccination and/or SARS-CoV-2 variant breakthrough infections. IgG4 antibodies among all spike-specific IgG antibodies rose, on average, from 0.04% shortly after the second vaccination to 19.27% late after the third vaccination. This induction of IgG4 antibodies was not observed after homologous or heterologous SARS-CoV-2 vaccination with adenoviral vectors. Single-cell sequencing and flow cytometry revealed substantial frequencies of IgG4-switched B cells within the spike-binding memory B cell population [median of 14.4%; interquartile range (IQR) of 6.7 to 18.1%] compared with the overall memory B cell repertoire (median of 1.3%; IQR of 0.9 to 2.2%) after three immunizations. This class switch was associated with a reduced capacity of the spike-specific antibodies to mediate antibody-dependent cellular phagocytosis and complement deposition. Because Fc-mediated effector functions are critical for antiviral immunity, these findings may have consequences for the choice and timing of vaccination regimens using mRNA vaccines, including future booster immunizations against SARS-CoV-2.


Assuntos
COVID-19 , Imunoglobulina G , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , SARS-CoV-2 , Vacinação
8.
Cancers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428578

RESUMO

Ewing sarcoma (EwS) is a highly malignant sarcoma of bone and soft tissue with early metastatic spread and an age peak in early puberty. The prognosis in advanced stages is still dismal, and the long-term effects of established therapies are severe. Efficacious targeted therapies are urgently needed. Our previous work has provided preliminary safety and efficacy data utilizing T cell receptor (TCR) transgenic T cells, generated by retroviral gene transfer, targeting HLA-restricted peptides on the tumor cell derived from metastatic drivers. Here, we compared T cells engineered with either CRISPR/Cas9 or retroviral gene transfer. Firstly, we confirmed the feasibility of the orthotopic replacement of the endogenous TCR by CRISPR/Cas9 with a TCR targeting our canonical metastatic driver chondromodulin-1 (CHM1). CRISPR/Cas9-engineered T cell products specifically recognized and killed HLA-A*02:01+ EwS cell lines. The efficiency of retroviral transduction was higher compared to CRISPR/Cas9 gene editing. Both engineered T cell products specifically recognized tumor cells and elicited cytotoxicity, with CRISPR/Cas9 engineered T cells providing prolonged cytotoxic activity. In conclusion, T cells engineered with CRISPR/Cas9 could be feasible for immunotherapy of EwS and may have the advantage of more prolonged cytotoxic activity, as compared to T cells engineered with retroviral gene transfer.

9.
Sci Immunol ; 7(74): eabm2077, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35960818

RESUMO

T cell receptor (TCR) avidity is assumed to be a major determinant of the spatiotemporal fate and protective capacity of tumor-specific T cells. However, monitoring polyclonal T cell responses with known TCR avidities in vivo over space and time remains challenging. Here, we investigated the fate and functionality of tumor neoantigen-specific T cells with TCRs of distinct avidities in a well-established, reductionist preclinical tumor model and human patients with melanoma. To this end, we used polyclonal T cell transfers with in-depth characterized TCRs together with flow cytometric phenotyping in mice inoculated with MC38 OVA tumors. Transfer of T cells from retrogenic mice harboring TCRs with high avidity resulted in best tumor protection. Unexpectedly, we found that both high- and low-avidity T cells are similarly abundant within the tumor and adopt concordant phenotypic signs of exhaustion. Outside the tumor, high-avidity TCR T cells were not generally overrepresented but, instead, selectively enriched in T cell populations with intermediate PD-1 protein expression. Single-cell sequencing of neoantigen-specific T cells from two patients with melanoma-combined with transgenic reexpression of identified TCRs by CRISPR-Cas9-mediated orthotopic TCR replacement-revealed high-functionality TCRs to be enriched in T cells with RNA signatures of recent activation. Furthermore, of 130 surface protein candidates, PD-1 surface expression was most consistently enriched in functional TCRs. Together, our findings show that tumor-reactive TCRs with high protective capacity circulating in peripheral blood are characterized by a signature of recent activation.


Assuntos
Melanoma , Receptores de Antígenos de Linfócitos T , Animais , Antígenos de Neoplasias , Humanos , Camundongos , Linfócitos T/metabolismo
10.
Eur J Immunol ; 52(4): 582-596, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35099805

RESUMO

The avidity of TCRs for peptide-major histocompatibility complexes (pMHCs) is a governing factor in how T cells respond to antigen. TCR avidity is generally linked to T-cell functionality and there is growing evidence for distinct roles of low and high avidity T cells in different phases of immune responses. While physiological immune responses and many therapeutic T-cell products targeting infections or cancers consist of polyclonal T-cell populations with a wide range of individual avidities, the role of T-cell avidity is usually investigated only in monoclonal experimental settings. In this report, we induced polyclonal T-cell responses with a wide range of avidities toward a model epitope by altered peptide ligands, and benchmarked global avidity of physiological polyclonal populations by investigation of TCR-pMHC koff -rates. We then investigated how varying sizes and avidities of monoclonal subpopulations translate into global koff -rates. Global koff -rates integrate subclonal avidities in a predictably weighted manner and robustly correlate with the functionality of murine polyclonal T-cell populations in vitro and in vivo. Surveying the full avidity spectrum is essential to accurately assess polyclonal immune responses and inform the design of polyclonal T-cell therapeutics.


Assuntos
Receptores de Antígenos de Linfócitos T , Linfócitos T , Animais , Antígenos , Complexo Principal de Histocompatibilidade , Camundongos , Peptídeos , Receptores de Antígenos de Linfócitos T/genética
11.
Mol Ther ; 30(1): 198-208, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34058386

RESUMO

Viral infections cause life-threatening disease in immunocompromised patients and especially following transplantation. T cell receptor (TCR) engineering redirects specificity and can bring significant progress to emerging adoptive T cell transfer (ACT) approaches. T cell epitopes are well described, although knowledge is limited on which TCRs mediate protective immunity. In this study, refractory adenovirus (AdV) infection after hematopoietic stem cell transplantation (HSCT) was treated with ACT of highly purified Hexon5-specific T cells using peptide major histocompatibility complex (pMHC)-Streptamers against the immunodominant human leukocyte antigen (HLA)-A∗0101-restricted peptide LTDLGQNLLY. AdV was successfully controlled through this oligoclonal ACT. Novel protective TCRs were isolated ex vivo and preclinically engineered into the TCR locus of allogeneic third-party primary T cells by CRISPR-Cas9-mediated orthotopic TCR replacement. Both TCR knockout and targeted integration of the new TCR in one single engineering step led to physiological expression of the transgenic TCR. Reprogrammed TCR-edited T cells showed strong virus-specific functionality such as cytokine release, effector marker upregulation, and proliferation capacity, as well as cytotoxicity against LTDLGQNLLY-presenting and AdV-infected targets. In conclusion, ex vivo isolated TCRs with clinical proven protection through ACT could be redirected into T cells from naive third-party donors. This approach ensures that transgenic TCRs are protective with potential off-the-shelf use and widened applicability of ACT to various refractory emerging viral infections.


Assuntos
Receptores de Antígenos de Linfócitos T , Viroses , Transferência Adotiva , Humanos , Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
12.
Cell Rep Med ; 2(8): 100374, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467251

RESUMO

Adoptive transfer of T cells expressing a transgenic T cell receptor (TCR) has the potential to revolutionize immunotherapy of infectious diseases and cancer. However, the generation of defined TCR-transgenic T cell medicinal products with predictable in vivo function still poses a major challenge and limits broader and more successful application of this "living drug." Here, by studying 51 different TCRs, we show that conventional genetic engineering by viral transduction leads to variable TCR expression and functionality as a result of variable transgene copy numbers and untargeted transgene integration. In contrast, CRISPR/Cas9-mediated TCR replacement enables defined, targeted TCR transgene insertion into the TCR gene locus. Thereby, T cell products display more homogeneous TCR expression similar to physiological T cells. Importantly, increased T cell product homogeneity after targeted TCR gene editing correlates with predictable in vivo T cell responses, which represents a crucial aspect for clinical application in adoptive T cell immunotherapy.


Assuntos
Edição de Genes , Genes Codificadores dos Receptores de Linfócitos T , Imunoterapia , Linfócitos T/imunologia , Animais , Linhagem Celular , Membrana Celular/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos NOD , Transcrição Gênica
13.
Hemasphere ; 5(7): e603, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34235400

RESUMO

The clinical and immunological impact of B-cell depletion in the context of coronavirus disease 2019 (COVID-19) is unclear. We conducted a prospectively planned analysis of COVID-19 in patients who received B-cell depleting anti-CD20 antibodies and chemotherapy for B-cell lymphomas. The control cohort consisted of age- and sex-matched patients without lymphoma who were hospitalized because of COVID-19. We performed detailed clinical analyses, in-depth cellular and molecular immune profiling, and comprehensive virological studies in 12 patients with available biospecimens. B-cell depleted lymphoma patients had more severe and protracted clinical course (median hospitalization 88 versus 17 d). All patients actively receiving immunochemotherapy (n = 5) required ICU support including long-term mechanical ventilation. Neutrophil recovery following granulocyte colony stimulating factor stimulation coincided with hyperinflammation and clinical deterioration in 4 of the 5 patients. Immune cell profiling and gene expression analysis of peripheral blood mononuclear cells revealed early activation of monocytes/macrophages, neutrophils, and the complement system in B-cell depleted lymphoma patients, with subsequent exacerbation of the inflammatory response and dysfunctional interferon signaling at the time of clinical deterioration of COVID-19. Longitudinal immune cell profiling and functional in vitro assays showed SARS-CoV-2-specific CD8+ and CD4+ T-effector cell responses. Finally, we observed long-term detection of SARS-CoV-2 in respiratory specimens (median 84 versus 12 d) and an inability to mount lasting SARS-CoV-2 antibody responses in B-cell depleted lymphoma patients. In summary, we identified clinically relevant particularities of COVID-19 in lymphoma patients receiving B-cell depleting immunochemotherapies.

14.
Nat Immunol ; 21(12): 1563-1573, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33106669

RESUMO

Chronic cytomegalovirus (CMV) infection leads to long-term maintenance of extraordinarily large CMV-specific T cell populations. The magnitude of this so-called 'memory inflation' is thought to mainly depend on antigenic stimulation during the chronic phase of infection. However, by mapping the long-term development of CD8+ T cell families derived from single naive precursors, we find that fate decisions made during the acute phase of murine CMV infection can alter the level of memory inflation by more than 1,000-fold. Counterintuitively, a T cell family's capacity for memory inflation is not determined by its initial expansion. Instead, those rare T cell families that dominate the chronic phase of infection show an early transcriptomic signature akin to that of established T central memory cells. Accordingly, a T cell family's long-term dominance is best predicted by its early content of T central memory precursors, which later serve as a stem-cell-like source for memory inflation.


Assuntos
Evolução Clonal/imunologia , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Viroses/etiologia , Viroses/metabolismo , Doença Aguda , Animais , Biomarcadores , Doença Crônica , Citomegalovirus/imunologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos , Muromegalovirus/imunologia
15.
Pathogens ; 9(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823573

RESUMO

Evolutionary processes govern the selection of T cell clonotypes that are optimally suited to mediate efficient antigen-specific immune responses against pathogens and tumors. While the theoretical diversity of T cell receptor (TCR) sequences is vast, the antigen-specific TCR repertoire is restricted by its peptide epitope and the presenting major histocompatibility complex (pMHC). It remains unclear how many TCR sequences are recruited into an antigen-specific T cell response, both within and across different organisms, and which factors shape both of these distributions. Infection of mice with ovalbumin-expressing cytomegalovirus (IE2-OVA-mCMV) represents a well-studied model system to investigate T cell responses given their size and longevity. Here we investigated > 180,000 H2kb/SIINFEKL-recognizing TCR CDR3α or CDR3ß sequences from 25 individual mice spanning seven different time points during acute infection and memory inflation. In-depth repertoire analysis revealed that from a pool of highly diverse, but overall limited sequences, T cell responses were dominated by public clonotypes, partly with unexpectedly extreme degrees of sharedness between individual mice ("supra-public clonotypes"). Public clonotypes were found exclusively in a fraction of TCRs with a high generation probability. Generation probability and degree of sharedness select for highly functional TCRs, possibly mediated through elevating intraindividual precursor frequencies of clonotypes.

16.
Blood ; 136(12): 1407-1418, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32483603

RESUMO

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRß chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.


Assuntos
Sistemas CRISPR-Cas , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética , Células Tumorais Cultivadas
17.
Cells ; 9(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492858

RESUMO

Natural adaptive immunity co-evolved with pathogens over millions of years, and adoptive transfer of non-engineered T cells to fight infections or cancer so far exhibits an exceptionally safe and functional therapeutic profile in clinical trials. However, the personalized nature of therapies using virus-specific T cells, donor lymphocyte infusion, or tumor-infiltrating lymphocytes makes implementation in routine clinical care difficult. In principle, genetic engineering can be used to make T-cell therapies more broadly applicable, but so far it significantly alters the physiology of cells. We recently demonstrated that orthotopic T-cell receptor (TCR) replacement (OTR) by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) can be used to generate engineered T cells with preservation of near-physiological function. In this review, we present the current status of OTR technology development and discuss its potential for TCR-based therapies. By providing the means to combine the therapeutic efficacy and safety profile of physiological T cells with the versatility of cell engineering, OTR can serve as an "enabler" for TCR-based therapies.


Assuntos
Imunoterapia , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígenos/metabolismo , Edição de Genes , Terapia Genética , Humanos , Pesquisa Translacional Biomédica
18.
Cancer Immunol Immunother ; 68(10): 1701-1712, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31542797

RESUMO

Since the first bone marrow transplantation, adoptive T cell therapy (ACT) has developed over the last 80 years to a highly efficient and specific therapy for infections and cancer. Genetic engineering of T cells with antigen-specific receptors now provides the possibility of generating highly defined and efficacious T cell products. The high sensitivity of engineered T cells towards their targets, however, also bears the risk of severe off-target toxicities. Therefore, different safety strategies for engineered T cells have been developed that enable removal of the transferred cells in case of adverse events, control of T cell activity or improvement of target selectivity. Receptor avidity is a crucial component in the balance between safety and efficacy of T cell products. In clinical trials, T cells equipped with high avidity T cell receptor (TCR)/chimeric antigen receptor (CAR) have been mostly used so far because of their faster and better response to antigen recognition. However, over-activation can trigger T cell exhaustion/death as well as side effects due to excessive cytokine production. Low avidity T cells, on the other hand, are less susceptible to over-activation and could possess better selectivity in case of tumor antigens shared with healthy tissues, but complete tumor eradication may not be guaranteed. In this review we describe how 'optimal' TCR/CAR affinity can increase the safety/efficacy balance of engineered T cells, and discuss simultaneous or sequential infusion of high and low avidity receptors as further options for efficacious but safe T cell therapy.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Afinidade de Anticorpos , Engenharia Genética , Humanos , Imunoterapia Adotiva/efeitos adversos
19.
Nat Biomed Eng ; 3(12): 974-984, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31182835

RESUMO

Therapeutic T cells with desired specificity can be engineered by introducing T-cell receptors (TCRs) specific for antigens of interest, such as those from pathogens or tumour cells. However, TCR engineering is challenging, owing to the complex heterodimeric structure of the receptor and to competition and mispairing between endogenous and transgenic receptors. Additionally, conventional TCR insertion disrupts the regulation of TCR dynamics, with consequences for T-cell function. Here, we report the outcomes and validation, using five different TCRs, of the use of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) with non-virally delivered template DNA for the elimination of endogenous TCR chains and for the orthotopic placement of TCRs in human T cells. We show that, whereas the editing of a single receptor chain results in chain mispairing, simultaneous editing of α- and ß-chains combined with orthotopic TCR placement leads to accurate αß-pairing and results in TCR regulation similar to that of physiological T cells.


Assuntos
Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Antígenos de Neoplasias/imunologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Edição de Genes , Técnicas de Inativação de Genes , Genes Codificadores dos Receptores de Linfócitos T/genética , Vetores Genéticos/genética , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Retroviridae/genética , Transdução Genética , Transgenes
20.
Oncoimmunology ; 7(9): e1481558, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228952

RESUMO

Immunotherapy can revolutionize anti-cancer therapy if specific targets are available. Immunogenic peptides encoded by cancer-specific genes (CSGs) may enable targeted immunotherapy, even of oligo-mutated cancers, which lack neo-antigens generated by protein-coding missense mutations. Here, we describe an algorithm and user-friendly software named RAVEN (Rich Analysis of Variable gene Expressions in Numerous tissues) that automatizes the systematic and fast identification of CSG-encoded peptides highly affine to Major Histocompatibility Complexes (MHC) starting from transcriptome data. We applied RAVEN to a dataset assembled from 2,678 simultaneously normalized gene expression microarrays comprising 50 tumor entities, with a focus on oligo-mutated pediatric cancers, and 71 normal tissue types. RAVEN performed a transcriptome-wide scan in each cancer entity for gender-specific CSGs, and identified several established CSGs, but also many novel candidates potentially suitable for targeting multiple cancer types. The specific expression of the most promising CSGs was validated in cancer cell lines and in a comprehensive tissue-microarray. Subsequently, RAVEN identified likely immunogenic CSG-encoded peptides by predicting their affinity to MHCs and excluded sequence identity to abundantly expressed proteins by interrogating the UniProt protein-database. The predicted affinity of selected peptides was validated in T2-cell peptide-binding assays in which many showed binding-kinetics like a very immunogenic influenza control peptide. Collectively, we provide an exquisitely curated catalogue of cancer-specific and highly MHC-affine peptides across 50 cancer types, and a freely available software (https://github.com/JSGerke/RAVENsoftware) to easily apply our algorithm to any gene expression dataset. We anticipate that our peptide libraries and software constitute a rich resource to advance anti-cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA