Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Gen Virol ; 101(10): 1025-1026, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32940596

RESUMO

Caulimoviridae is a family of non-enveloped reverse-transcribing plant viruses with non-covalently closed circular dsDNA genomes of 7.1-9.8 kbp in the order Ortervirales. They infect a wide range of monocots and dicots. Some viruses cause economically important diseases of tropical and subtropical crops. Transmission occurs through insect vectors (aphids, mealybugs, leafhoppers, lace bugs) and grafting. Activation of infectious endogenous viral elements occurs in Musa balbisiana, Petunia hybrida and Nicotiana edwardsonii. However, most endogenous caulimovirids are not infectious. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Caulimoviridae, which is available at ictv.global/report/caulimoviridae.


Assuntos
Caulimoviridae , Caulimoviridae/classificação , Caulimoviridae/fisiologia , Caulimoviridae/ultraestrutura , Genoma Viral , Plantas/virologia , Replicação Viral
3.
Virology ; 547: 57-71, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32560905

RESUMO

Viral proteins often interact with multiple host proteins during virus accumulation and spread. Identities and functions of all interacting host proteins are not known. Through a yeast two-hybrid screen an Arabidopsis thaliana Qa-SNARE protein [syntaxin of plants 23 (AtSYP23)], associated with pre-vacuolar compartment and vacuolar membrane fusion activities, interacted with Tobacco mosaic virus (TMV) 126 kDa protein, associated with virus accumulation and spread. In planta, AtSYP23 and AtSYP22 each fused with mCherry, co-localized with 126 kDa protein-GFP. Additionally, A. thaliana and Nicotiana benthamiana SYP2 proteins and 126 kDa protein interacted during bimolecular fluorescence complementation analysis. Decreased TMV accumulation in Arabidopsis plants lacking SYP23 and in N. benthamiana plants subjected to virus-induced gene silencing (VIGS) of SYP2 orthologs was observed. Diminished TMV accumulation during VIGS correlated with less intercellular virus spread. The inability to eliminate virus accumulation suggests that SYP2 proteins function redundantly for TMV accumulation, as for plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nicotiana/metabolismo , Doenças das Plantas/virologia , Proteínas Qa-SNARE/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Proteínas Virais/metabolismo , Arabidopsis/genética , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Inativação Gênica , Doenças das Plantas/genética , Ligação Proteica , Proteínas Qa-SNARE/genética , Nicotiana/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Proteínas Virais/genética
4.
Biomed Res Int ; 2020: 7465242, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258141

RESUMO

Recent comparisons between plant and animal viruses reveal many common principles that underlie how all viruses express their genetic material, amplify their genomes, and link virion assembly with replication. Cauliflower mosaic virus (CaMV) is not infectious for human beings. Here, we show that CaMV transactivator/viroplasmin protein (TAV) shares sequence similarity with and behaves like the human ribonuclease H1 (RNase H1) in reducing DNA/RNA hybrids detected with S9.6 antibody in HEK293T cells. We showed that TAV is clearly expressed in the cytosol and in the nuclei of transiently transfected human cells, similar to its distribution in plants. TAV also showed remarkable cytotoxic effects in U251 human glioma cells in vitro. These characteristics pave the way for future analysis on the use of the plant virus protein TAV, as an alternative to human RNAse H1 during gene therapy in human cells.


Assuntos
Caulimovirus/enzimologia , Glioma/tratamento farmacológico , Ribonuclease H , Proteínas Virais , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Glioma/metabolismo , Glioma/patologia , Células HEK293 , Humanos , Ribonuclease H/química , Ribonuclease H/farmacologia , Proteínas Virais/química , Proteínas Virais/farmacologia
5.
Viruses ; 11(7)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261652

RESUMO

In this paper we have characterized the lineage of two traits associated with the coat proteins (CPs) of the tombusvirids: Silencing suppression and HR elicitation in Nicotiana species. We considered that the tombusvirid CPs might collectively be considered an effector, with the CP of each CP-encoding species comprising a structural variant within the family. Thus, a phylogenetic analysis of the CP could provide insight into the evolution of a pathogen effector. The phylogeny of the CP of tombusvirids indicated that CP representatives of the family could be divided into four clades. In two separate clades the CP triggered a hypersensitive response (HR) in Nicotiana species of section Alatae but did not have silencing suppressor activity. In a third clade the CP had a silencing suppressor activity but did not have the capacity to trigger HR in Nicotiana species. In the fourth clade, the CP did not carry either function. Our analysis illustrates how structural changes that likely occurred in the CP effector of progenitors of the current genera led to either silencing suppressor activity, HR elicitation in select Nicotiana species, or neither trait.


Assuntos
Proteínas do Capsídeo/genética , Inativação Gênica , Nicotiana/genética , Doenças das Plantas/virologia , Tombusviridae/genética , Proteínas do Capsídeo/imunologia , Genoma Viral , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Nicotiana/imunologia , Nicotiana/virologia , Tombusviridae/classificação , Tombusviridae/imunologia , Tombusviridae/isolamento & purificação
6.
Methods Mol Biol ; 1991: 33-42, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31041760

RESUMO

In plants, RNA silencing is an important mechanism for gene regulation and defense that is targeted by proteins of viral pathogens effecting silencing suppression. In this chapter we describe a new assay to probe silencing suppressor activity using Agrobacterium infiltration of Nicotiana benthamiana and confocal microscopy. The key element in this assay involves the use of a reporter construct that is transiently expressed at a much lower level than free GFP, and this increases the sensitivity of detection of weak silencing suppressors such as the P6 protein of Cauliflower mosaic virus. Although initially developed for virus silencing suppressors, this technique could also prove valuable to characterize the potential for weak silencing suppressors in the effector repertoires of fungi, bacteria, nematodes, and oomycetes.


Assuntos
Agrobacterium/fisiologia , Proteínas de Ligação a DNA/metabolismo , Microscopia Confocal/métodos , Nicotiana/citologia , Nicotiana/genética , Doenças das Plantas/virologia , Interferência de RNA , Proteínas Virais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Fluorescência Verde/metabolismo , Supressão Genética , Nicotiana/virologia , Proteínas Virais/genética
8.
Plant Physiol ; 166(3): 1345-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25239023

RESUMO

The P6 protein of Cauliflower mosaic virus (CaMV) is responsible for the formation of inclusion bodies (IBs), which are the sites for viral gene expression, replication, and virion assembly. Moreover, recent evidence indicates that ectopically expressed P6 inclusion-like bodies (I-LBs) move in association with actin microfilaments. Because CaMV virions accumulate preferentially in P6 IBs, we hypothesized that P6 IBs have a role in delivering CaMV virions to the plasmodesmata. We have determined that the P6 protein interacts with a C2 calcium-dependent membrane-targeting protein (designated Arabidopsis [Arabidopsis thaliana] Soybean Response to Cold [AtSRC2.2]) in a yeast (Saccharomyces cerevisiae) two-hybrid screen and have confirmed this interaction through coimmunoprecipitation and colocalization assays in the CaMV host Nicotiana benthamiana. An AtSRC2.2 protein fused to red fluorescent protein (RFP) was localized to the plasma membrane and specifically associated with plasmodesmata. The AtSRC2.2-RFP fusion also colocalized with two proteins previously shown to associate with plasmodesmata: the host protein Plasmodesmata-Localized Protein1 (PDLP1) and the CaMV movement protein (MP). Because P6 I-LBs colocalized with AtSRC2.2 and the P6 protein had previously been shown to interact with CaMV MP, we investigated whether P6 I-LBs might also be associated with plasmodesmata. We examined the colocalization of P6-RFP I-LBs with PDLP1-green fluorescent protein (GFP) and aniline blue (a stain for callose normally observed at plasmodesmata) and found that P6-RFP I-LBs were associated with each of these markers. Furthermore, P6-RFP coimmunoprecipitated with PDLP1-GFP. Our evidence that a portion of P6-GFP I-LBs associate with AtSRC2.2 and PDLP1 at plasmodesmata supports a model in which P6 IBs function to transfer CaMV virions directly to MP at the plasmodesmata.


Assuntos
Proteínas de Arabidopsis/metabolismo , Caulimovirus/metabolismo , Plasmodesmos/metabolismo , Proteínas Virais/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Caulimovirus/patogenicidade , Membrana Celular/metabolismo , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Corpos de Inclusão Viral/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Nicotiana/virologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética , Vírion/metabolismo , Proteína Vermelha Fluorescente
9.
Mol Plant Microbe Interact ; 26(2): 240-8, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23075040

RESUMO

In this study, we screened 22 Nicotiana spp. for resistance to the tombusviruses Tomato bushy stunt virus (TBSV), Cucumber necrosis virus, and Cymbidium ringspot virus. Eighteen species were resistant, and resistance was manifested in at least two different categories. In all, 13 species responded with a hypersensitive response (HR)-type resistance, whereas another five were resistant but either had no visible response or responded with chlorotic lesions rather than necrotic lesions. Three different TBSV proteins were found to trigger HR in Nicotiana spp. in an agroinfiltration assay. The most common avirulence (avr) determinant was the TBSV coat protein P41, a protein that had not been previously recognized as an avr determinant. A mutational analysis confirmed that the coat protein rather than the viral RNA sequence was responsible for triggering HR, and it triggered HR in six species in the Alatae section. The TBSV P22 movement protein triggered HR in two species in section Undulatae (Nicotiana glutinosa and N. edwardsonii) and one species in section Alatae (N. forgetiana). The TBSV P19 RNA silencing suppressor protein triggered HR in sections Sylvestres (N. sylvestris), Nicotiana (N. tabacum), and Alatae (N. bonariensis). In general, Nicotiana spp. were capable of recognizing only one tombusvirus avirulence determinant, with the exceptions of N. bonariensis and N. forgetiana, which were each able to recognize P41, as well as P19 and P22, respectively. Agroinfiltration failed to detect the TBSV avr determinants responsible for triggering HR in N. arentsii, N. undulata, and N. rustica. This study illustrates the breadth and variety of resistance responses to tombusviruses that exists in the Nicotiana genus.


Assuntos
Resistência à Doença , Nicotiana/imunologia , Doenças das Plantas/imunologia , Tombusvirus/patogenicidade , Proteínas Virais/metabolismo , Proteínas do Capsídeo/genética , Inativação Gênica , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , RNA Viral/genética , RNA Viral/metabolismo , Nicotiana/genética , Nicotiana/virologia , Tombusvirus/imunologia , Tombusvirus/fisiologia , Proteínas Virais/genética , Virulência
10.
Mol Plant Microbe Interact ; 24(1): 91-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20977306

RESUMO

We have used an agroinfiltration assay for a comparative study of the roles of tombusvirus P22 and P19 proteins in elicitation of hypersensitive response (HR)-like necrosis and the role of P19 in silencing suppression in Nicotiana species. The advantage of agroinfiltration rather than expression in plant virus vectors is that putative viral avirulence proteins can be evaluated in isolation, eliminating the possibility of synergistic effects with other viral proteins. We found that tombusvirus P22 and P19 proteins elicited HR-like necrosis in certain Nicotiana species but, also, that Nicotiana species could recognize subtle differences in sequence between these proteins. Furthermore, Nicotiana species that responded with systemic necrosis to virion inoculations responded to agroinfiltration of tombusvirus P19 with a very weak and delayed necrosis, indicating that the rapid HR-like necrosis was associated with putative resistance genes and a plant defense response that limited the spread of the virus. Tombusvirus P19 proteins also appeared to differ in their effectiveness as silencing suppressors; in our assay, the P19 proteins of Cymbidium ringspot virus and Tomato bushy stunt virus were stronger silencing suppressors than Cucumber necrosis virus P20. Finally, we show that agroinfiltration can be used to track the presence of putative plant resistance genes in Nicotiana species that target either tombusvirus P19 or P22.


Assuntos
Nicotiana/genética , Doenças das Plantas/virologia , Tombusviridae/genética , Tombusvirus/genética , Proteínas Virais/genética , Clonagem Molecular , Códon/genética , Primers do DNA , Inativação Gênica , Genes Virais , Genoma Viral , Mutagênese , Necrose , Doenças das Plantas/prevenção & controle , Folhas de Planta/virologia , Nicotiana/virologia , Tombusviridae/metabolismo , Tombusvirus/metabolismo , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
11.
Plant Signal Behav ; 4(5): 454-6, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19816096

RESUMO

Plant viruses are composed of diverse genomes (e.g., RNA or DNA) encoding proteins that vary widely in sequence. It is becoming clear, however, that some apparently unrelated viral proteins have similar functions. The P6 protein encoded by Cauliflower mosaic virus (CaMV) and the 126-kDa protein encoded by Tobacco mosaic virus (TMV) are examples of this convergence in protein function. Although having no apparent sequence similarity, both proteins are pathogenicity determinants during infection, are components of novel intracellular cytoplasmic inclusions and suppress RNA silencing. Here we review our recent results demonstrating an additional novel convergent activity between these proteins: both proteins traffic along the actin cytoskeleton (microfilaments). We also discuss results showing a unique property of the P6 protein: a non-mobile strong association with microtubules. Lastly, we discuss the potential mechanism by which the P6 and 126-kDa proteins traffic along microfilaments. We provide new results suggesting that actin filament polymerization-driven movement does not support 126-kDa protein transport, thus leading to a focus on myosins as the driving force for this movement.

12.
Plant Physiol ; 149(2): 1005-16, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19028879

RESUMO

The gene VI product (P6) of Cauliflower mosaic virus (CaMV) is a multifunctional protein known to be a major component of cytoplasmic inclusion bodies formed during CaMV infection. Although these inclusions are known to contain virions and are thought to be sites of translation from the CaMV 35S polycistronic RNA intermediate, the precise role of these bodies in the CaMV infection cycle remains unclear. Here, we examine the functionality and intracellular location of a fusion between P6 and GFP (P6-GFP). We initially show that the ability of P6-GFP to transactivate translation is comparable to unmodified P6. Consequently, our work has direct application for the large body of literature in which P6 has been expressed ectopically and its functions characterized. We subsequently found that P6-GFP forms highly motile cytoplasmic inclusion bodies and revealed through fluorescence colocalization studies that these P6-GFP bodies associate with the actin/endoplasmic reticulum network as well as microtubules. We demonstrate that while P6-GFP inclusions traffic along microfilaments, those associated with microtubules appear stationary. Additionally, inhibitor studies reveal that the intracellular movement of P6-GFP inclusions is sensitive to the actin inhibitor, latrunculin B, which also inhibits the formation of local lesions by CaMV in Nicotiana edwardsonii leaves. The motility of P6 along microfilaments represents an entirely new property for this protein, and these results imply a role for P6 in intracellular and cell-to-cell movement of CaMV.


Assuntos
Actinas/fisiologia , Caulimovirus/fisiologia , Corpos de Inclusão Viral/fisiologia , Microtúbulos/fisiologia , Transativadores/fisiologia , Proteínas Virais/fisiologia , Caulimovirus/genética , Retículo Endoplasmático/fisiologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas dos Microfilamentos/fisiologia , Transfecção
13.
Phytopathology ; 96(5): 453-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-18944304

RESUMO

ABSTRACT A new variety of Nicotiana, N. edwardsonii var. Columbia, was evaluated for its capacity to serve as a new source for virus resistance genes. Columbia was developed from a hybridization between N. glutinosa and N. clevelandii, the same parents used for the formation of the original N. edwardsonii. However, in contrast to the original N. edwardsonii, crosses between Columbia and either of its parents are fertile. Thus, the inheritance of virus resistance genes present in N. glutinosa could be characterized by using Columbia as a bridge plant in crosses with the susceptible parent, N. clevelandii. To determine how virus resistance genes would segregate in interspecific crosses between Columbia and N. clevelandii, we followed the fate of the N gene, a single dominant gene that specifies resistance to Tobacco mosaic virus (TMV). Our genetic evidence indicated that the entire chromosome containing the N gene was introgressed into N. clevelandii to create an addition line, designated N. clevelandii line 19. Although line 19 was homozygous for resistance to TMV, it remained susceptible to Tomato bushy stunt virus (TBSV) and Cauliflower mosaic virus (CaMV) strain W260, indicating that resistance to these viruses must reside on other N. glutinosa chromosomes. We also developed a second addition line, N. clevelandii line 36, which was homozygous for resistance to TBSV. Line 36 was susceptible to TMV and CaMV strain W260, but was resistant to other tombusviruses, including Cucumber necrosis virus, Cymbidium ringspot virus, Lettuce necrotic stunt virus, and Carnation Italian ringspot virus.

14.
Mol Plant Microbe Interact ; 18(3): 212-9, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15782635

RESUMO

The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N. bigelovii, can selectively block the cell death pathway during HR, whereas the resistance pathway against W260 remains intact. Suppression of cell death was evident not only macroscopically but also microscopically. The suppression of HR-mediated cell death was specific to CaMV, as Tobacco mosaic virus was able to elicit HR in the plants that contained CCD1. CCD1 also blocks the development of a systemic cell death symptom induced specifically by the P6 protein of W260 in N. clevelandii. Introgression of CCD1 from N. bigelovii into N. clevelandii blocked the development of systemic cell death in response to W260 infection but could not prevent systemic cell death induced by Tomato bushy stunt virus. Thus, CCD1 blocks both local and systemic cell death induced by P6 of W260 but does not act as a general suppressor of cell death induced by other plant viruses. Furthermore, experiments with CCD1 provide further evidence that cell death could be uncoupled from resistance in the HR of Nicotiana edwardsonii to CaMV W260.


Assuntos
Caulimovirus/patogenicidade , Genes de Plantas , Doenças das Plantas/genética , Doenças das Plantas/virologia , Morte Celular , Cruzamentos Genéticos , Modelos Biológicos , Fenótipo , Nicotiana/genética , Nicotiana/virologia
15.
Mol Plant Microbe Interact ; 17(9): 976-85, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15384488

RESUMO

A new variety of Nicotiana edwardsonii, designated N. edwardsonii cv. Columbia, expresses pathogenesis-related (PR) proteins in a temporal manner 45 to 49 days postplanting and also exhibits enhanced resistance to Tobacco mosaic virus, Tobacco necrosis virus, and Tomato bushy stunt virus. In contrast, PR proteins were not expressed in the original N. edwardsonii variety at comparable ages but were induced after onset of a hypersensitive response to viral infection. The temporal induction of PR proteins in 'Columbia' was correlated with increases in salicylic acid and glycosylated salicylic acid. Earlier studies noted that some Nicotiana hybrids derived from interspecific crosses constitutively express PR proteins, but the genetic basis of this phenomenon had not been investigated, likely because many interspecific Nicotiana crosses are sterile. However, the close genetic relationship between N. edwardsonii and 'Columbia' indicated that a hybrid between these two plants might be fertile, and this proved to be true. Genetic crosses between 'Columbia' and N. edwardsonii demonstrated that a single, dominant gene conditioned temporal expression of PR proteins and enhanced resistance. This gene was designated TPR1 (for temporal expression of PR proteins).


Assuntos
Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Nicotiana/genética , Doenças das Plantas/virologia , Vírus do Mosaico do Tabaco/patogenicidade , Tobamovirus/patogenicidade , Imunidade Inata/genética , Folhas de Planta/virologia , Nicotiana/virologia
16.
Virology ; 293(2): 225-33, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11886242

RESUMO

The primary function associated at present with the gene VI product of Cauliflower mosaic virus (CaMV) is that of a translational transactivator (TAV). In this capacity, it alters the host translational machinery to allow reinitiation of translation of other CaMV genes on the polycistronic 35S RNA of CaMV. In addition, the gene VI protein can elicit a specific type of plant defense response called the hypersensitive response (HR) in Nicotiana edwardsonii. In this study, we have adapted the agroinfiltration technique to compare the sequences of CaMV gene VI required for TAV function and elicitation of HR. To measure the activity of the TAV, we coagroinfiltrated gene VI of CaMV strain W260 with a bicistronic GUS reporter plasmid. TAV function could be assayed 4 days postinfiltration, before the onset of HR in N. edwardsonii. Through the use of the TAV and HR assays, we could show that the TAV functions of gene VI of CaMV strains W260 and D4 were equivalent, but only W260 gene VI elicited HR. A mutational analysis of W260 gene VI showed that the structural requirements for elicitation of HR were much more stringent than those for TAV function. Small deletions from either the 5' or 3' end of W260 gene VI abolished its ability to elicit HR, although the TAV function was retained in the mutant. The TAV function could also tolerate a small insertion within gene VI; this insertion abolished the elicitor function. This study provides direct evidence that the TAV function of gene VI is separate from its role as an elicitor of HR.


Assuntos
Caulimovirus/patogenicidade , Genes Virais , Transativadores/fisiologia , Proteínas Virais/fisiologia , Caulimovirus/genética , Mutação , Biossíntese de Proteínas , Nicotiana/virologia , Transativadores/genética , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA