Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119317, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35752202

RESUMO

In multicellular organisms the regulated cell death apoptosis is critically important for both ontogeny and homeostasis. Mitochondria are indispensable for stress-induced apoptosis. The BCL-2 protein family controls mitochondrial apoptosis and initiates cell death through the pro-apoptotic activities of BAX and BAK at the outer mitochondrial membrane (OMM). Cellular survival is ensured by the retrotranslocation of mitochondrial BAX and BAK into the cytosol by anti-apoptotic BCL-2 proteins. BAX/BAK-dependent OMM permeabilization releases the mitochondrial cytochrome c (cyt c), which initiates activation of caspase-9. The caspase cascade leads to cell shrinkage, plasma membrane blebbing, chromatin condensation, and apoptotic body formation. Although it is clear that ultimately complexes of active BAX and BAK commit the cell to apoptosis, the nature of these complexes is still enigmatic. Excessive research has described a range of complexes, varying from a few molecules to several 10,000, in different systems. BAX/BAK complexes potentially form ring-like structures that could expose the inner mitochondrial membrane. It has been suggested that these pores allow the efflux of small proteins and even mitochondrial DNA. Here we summarize the current state of knowledge for mitochondrial BAX/BAK complexes and the interactions between these proteins and the membrane.


Assuntos
Membranas Mitocondriais , Proteína Killer-Antagonista Homóloga a bcl-2 , Proteínas Reguladoras de Apoptose/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
2.
Cell Death Differ ; 29(10): 2046-2059, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35397654

RESUMO

Apoptosis acts in defense against microbial infection, and many infectious agents have developed strategies to inhibit host cell apoptosis. The human pathogen Chlamydia trachomatis (Ctr) is an obligate intracellular bacterium that strongly inhibits mitochondrial apoptosis of its human host cell but there is no agreement how the bacteria achieve this. We here provide a molecular analysis of chlamydial apoptosis-inhibition in infected human cells and demonstrate that the block of apoptosis occurs during the activation of the effectors of mitochondrial apoptosis, Bak and Bax. We use small-molecule Bcl-2-family inhibitors and gene targeting to show that previous models cannot explain the anti-apoptotic effect of chlamydial infection. Although the anti-apoptotic Bcl-2-family protein Mcl-1 was strongly upregulated upon infection, Mcl-1-deficient cells and cells where Mcl-1 was pharmacologically inactivated were still protected. Ctr-infection could inhibit both Bax- and Bak-induced apoptosis. Apoptotic Bax-oligomerization and association with the outer mitochondrial membrane was reduced upon chlamydial infection. Infection further inhibited apoptosis induced conformational changes of Bak, as evidenced by changes to protease sensitivity, oligomerization and release from the mitochondrial porin VDAC2. Mitochondria isolated from Ctr-infected cells were protected against the pro-apoptotic Bcl-2-family proteins Bim and tBid but this protection was lost upon protease digestion. However, the protective effect of Ctr-infection was reduced in cells lacking the Bax/Bak-regulator VDAC2. We further found that OmpA, a porin of the outer membrane of Ctr, associated upon experimental expression with mitochondria and inhibited apoptosis, phenocopying the effect of the infection. These results identify a novel way of apoptosis inhibition, involving only the most downstream modulator of mitochondrial apoptosis and suggest that Chlamydia has a protein dedicated to the inhibition of apoptosis to secure its survival in human cells.


Assuntos
Proteínas Reguladoras de Apoptose , Proteína Killer-Antagonista Homóloga a bcl-2 , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Chlamydia trachomatis , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Peptídeo Hidrolases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
3.
Biology (Basel) ; 11(3)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35336786

RESUMO

The regulated cell death apoptosis enables redundant or compromised cells in ontogeny and homeostasis to remove themselves receptor-dependent after extrinsic signaling or after internal stress by BCL-2 proteins on the outer mitochondrial membrane (OMM). Mitochondrial BCL-2 proteins are also often needed for receptor-mediated signaling in apoptosis. Then, the truncated BH3-only protein BID (tBID) blocks retrotranslocation of the pro-apoptotic BCL-2 proteins BAX and BAK from the mitochondria into the cytosol. BAX and BAK in turn permeabilize the OMM. Although the BCL-2 proteins are controlled by a complex regulatory network, a specific mechanism for the inhibition of tBID remained unknown. Curiously, it was suggested that hexokinases, which channel glucose into the metabolism, have an intriguing function in the regulation of apoptosis. Recent analysis of transient hexokinase interactions with BAX revealed its participation in the inhibition of BAX and also BAK by retrotranslocation from mitochondria to the cytosol. In contrast to general apoptosis inhibition by anti-apoptotic BCL-2 proteins, hexokinase I and hexokinase 2 specifically inhibit tBID and thus the mitochondrial apoptosis pathway in response to death receptor signaling. Mitochondrial hexokinase localization and BH3 binding of cytosolic hexokinase domains are prerequisites for protection against receptor-mediated cell death, whereas glucose metabolism is not. This mechanism protects cells from apoptosis induced by cytotoxic T cells.

4.
PLoS One ; 14(3): e0214338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30908543

RESUMO

The regulation of cytochrome P450 3A (CYP3A) enzymes is established in humans, but molecular mechanisms of its basal and xenobiotic-mediated regulation in cattle are still unknown. Here, ~10 kbp of the bovine CYP3A28 gene promoter were cloned and sequenced, and putative transcription factor binding sites were predicted. The CYP3A28 proximal promoter (PP; -284/+71 bp) contained DNA elements conserved among species. Co-transfection of bovine nuclear receptors (NRs) pregnane X and constitutive androstane receptor (bPXR and bCAR) with various CYP3A28 promoter constructs into hepatoma cell lines identified two main regions, the PP and the distal fragment F3 (-6899/-4937 bp), that were responsive to bPXR (both) and bCAR (F3 fragment only). Site-directed mutagenesis and deletion of NR motif ER6, hepatocyte nuclear factor 1 (HNF-1) and HNF-4 binding sites in the PP suggested either the involvement of ER6 element in bPXR-mediated activation or the cooperation between bPXR and liver-enriched transcription factors (LETFs) in PP transactivation. A putative DR5 element within the F3 fragment was involved in bCAR-mediated PP+F3 transactivation. Although DNA enrichment by anti-human NR antibodies was quite low, ChIP investigations in control and RU486-treated BFH12 cells, suggested that retinoid X receptor α (RXRα) bound to ER6 and DR5 motifs and its recruitment was enhanced by RU486 treatment. The DR5 element seemed to be recognized mainly by bCAR, while no clear-cut results were obtained for bPXR. Present results point to species-differences in CYP3A regulation and the complexity of bovine CYP3A28 regulatory elements, but further confirmatory studies are needed.


Assuntos
Clonagem Molecular/métodos , Citocromo P-450 CYP3A/genética , Receptor de Pregnano X/genética , Receptores Citoplasmáticos e Nucleares/genética , Animais , Sítios de Ligação , Bovinos , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/metabolismo , Regulação da Expressão Gênica , Células Hep G2 , Humanos , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Transfecção
5.
Free Radic Biol Med ; 52(11-12): 2246-53, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22658994

RESUMO

In this paper, using the monocyte/macrophage cell line RAW264.7, we systematically investigate the impact of macrophage enrichment with unsaturated fatty acids on cellular radical synthesis. We found that the intracellular production of reactive nitrogen and oxygen intermediates depends on the activation status of the macrophages. For unstimulated macrophages PUFA enrichment resulted in an increase in cellular radical synthesis. For stimulated macrophages, instead, an impeding action of unsaturated fatty acids on the respiratory burst could be seen. Of particular importance, the impact of unsaturated fatty acids on the macrophage respiratory burst was also observed in RAW264.7 cells cocultivated with viable bacteria of the species Rhodococcus equi or Pseudomonas aeruginosa. PUFA supplementation of macrophages in the presence of R. equi or P. aeruginosa reduced the pathogen-stimulated synthesis of reactive nitrogen and oxygen intermediates. Furthermore, the unsaturated fatty acids were found to impede the expression of the myeloperoxidase gene and to reduce the activity of the enzyme. Hence, our data provide indications of a possible value of PUFA application to people suffering from chronic infections with R. equi and P. aeruginosa as a concomitant treatment to attenuate an excessive respiratory burst.


Assuntos
Infecções por Actinomycetales/imunologia , Ácidos Graxos Insaturados/farmacologia , Macrófagos/efeitos dos fármacos , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Explosão Respiratória , Rhodococcus equi/imunologia , Infecções por Actinomycetales/tratamento farmacológico , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Humanos , Imunidade Inata/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/fisiologia , Camundongos , Peroxidase/genética , Peroxidase/metabolismo , Infecções por Pseudomonas/tratamento farmacológico , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/efeitos dos fármacos
6.
Int J Mol Sci ; 12(11): 7510-28, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174614

RESUMO

Nutritional fatty acids are known to have an impact on membrane lipid composition of body cells, including cells of the immune system, thus providing a link between dietary fatty acid uptake, inflammation and immunity. In this study we reveal the significance of macrophage membrane lipid composition on gene expression and cytokine synthesis thereby highlighting signal transduction processes, macrophage activation as well as macrophage defense mechanisms. Using RAW264.7 macrophages as a model system, we identified polyunsaturated fatty acids (PUFA) of both the n-3 and the n-6 family to down-regulate the synthesis of: (i) the pro-inflammatory cytokines IL-1ß, IL-6 and TNF-α; (ii) the co-stimulatory molecule CD86; as well as (iii) the antimicrobial polypeptide lysozyme. The action of the fatty acids partially depended on the activation status of the macrophages. It is particularly important to note that the anti-inflammatory action of the PUFA could also be seen in case of infection of RAW264.7 with viable microorganisms of the genera R. equi and P. aeruginosa. In summary, our data provide strong evidence that PUFA from both the n-3 and the n-6 family down-regulate inflammation processes in context of chronic infections caused by persistent pathogens.


Assuntos
Infecções por Actinomycetales/imunologia , Ativação de Macrófagos , Macrófagos/química , Lipídeos de Membrana/química , Infecções por Pseudomonas/imunologia , Animais , Antígeno B7-2/metabolismo , Linhagem Celular , Gorduras na Dieta/farmacologia , Regulação para Baixo , Ácidos Graxos Insaturados/farmacologia , Imunidade Inata , Inflamação/tratamento farmacológico , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Macrófagos/citologia , Camundongos , Muramidase/metabolismo , Fator 88 de Diferenciação Mieloide/antagonistas & inibidores , Fator 88 de Diferenciação Mieloide/metabolismo , Pseudomonas aeruginosa , Rhodococcus equi , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA