Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 22(1): 52-62, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36343387

RESUMO

The EGFR/RAS/MEK/ERK signaling pathway (ERK/MAPK) is hyperactivated in most colorectal cancers. A current limitation of inhibitors of this pathway is that they primarily induce cytostatic effects in colorectal cancer cells. Nevertheless, these drugs do induce expression of proapoptotic factors, suggesting they may prime colorectal cancer cells to undergo apoptosis. As histone deacetylase inhibitors (HDACis) induce expression of multiple proapoptotic proteins, we examined whether they could synergize with ERK/MAPK inhibitors to trigger colorectal cancer cell apoptosis. Combined MEK/ERK and HDAC inhibition synergistically induced apoptosis in colorectal cancer cell lines and patient-derived tumor organoids in vitro, and attenuated Apc-initiated adenoma formation in vivo. Mechanistically, combined MAPK/HDAC inhibition enhanced expression of the BH3-only proapoptotic proteins BIM and BMF, and their knockdown significantly attenuated MAPK/HDAC inhibitor-induced apoptosis. Importantly, we demonstrate that the paradigm of combined MAPK/HDAC inhibitor treatment to induce apoptosis can be tailored to specific MAPK genotypes in colorectal cancers, by combining an HDAC inhibitor with either an EGFR, KRASG12C or BRAFV600 inhibitor in KRAS/BRAFWT; KRASG12C, BRAFV600E colorectal cancer cell lines, respectively. These findings identify a series of ERK/MAPK genotype-tailored treatment strategies that can readily undergo clinical testing for the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Inibidores de Histona Desacetilases , Humanos , Apoptose , Proteínas Reguladoras de Apoptose , Morte Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB , Inibidores de Histona Desacetilases/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases
2.
Cell Death Differ ; 29(11): 2288-2302, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35606410

RESUMO

Colorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis. Strikingly, EHF and CDX1 were also able to reprogramme non-colonic epithelial cells to express colonic differentiation markers. By contrast, inactivation of EHF and CDX1 in well-differentiated CRC cells triggered tumour de-differentiation. Mechanistically, we demonstrate that EHF physically interacts with CDX1 via its PNT domain, and that these transcription factors co-operatively drive transcription of the colonic differentiation marker, VIL1. Compound genetic deletion of Ehf and Cdx1 in the mouse colon disrupted normal colonic differentiation and significantly enhanced colorectal tumour progression. These findings thus reveal a novel mechanism driving epithelial de-differentiation and tumour progression in CRC.


Assuntos
Neoplasias Colorretais , Fatores de Transcrição , Animais , Camundongos , Neoplasias Colorretais/genética , Epigênese Genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Mol Cancer Ther ; 20(4): 704-715, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33563752

RESUMO

Amplification or overexpression of the FGFR family of receptor tyrosine kinases occurs in a significant proportion of gastric cancers. Regorafenib is a multikinase inhibitor of angiogenic and oncogenic kinases, including FGFR, which showed activity in the randomized phase II INTEGRATE clinical trial in advanced gastric cancer. There are currently no biomarkers that predict response to this agent, and whether regorafenib is preferentially active in FGFR-driven cancers is unknown. Through screening 25 gastric cancer cell lines, we identified five cell lines that were exquisitely sensitive to regorafenib, four of which harbored amplification or overexpression of FGFR family members. These four cell lines were also sensitive to the FGFR-specific inhibitors, BGJ398, erdafitinib, and TAS-120. Regorafenib inhibited FGFR-driven MAPK signaling in these cell lines, and knockdown studies confirmed their dependence on specific FGFRs for proliferation. In the INTEGRATE trial cohort, amplification or overexpression of FGFRs 1-4 was detected in 8%-19% of cases, however, this was not associated with improved progression-free survival and no objective responses were observed in these cases. Further preclinical analyses revealed FGFR-driven gastric cancer cell lines rapidly reactivate MAPK/ERK signaling in response to FGFR inhibition, which may underlie the limited clinical response to regorafenib. Importantly, combination treatment with an FGFR and MEK inhibitor delayed MAPK/ERK reactivation and synergistically inhibited proliferation of FGFR-driven gastric cancer cell lines. These findings suggest that upfront combinatorial inhibition of FGFR and MEK may represent a more effective treatment strategy for FGFR-driven gastric cancers.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêutico , Neoplasias Gástricas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Transfecção , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA