Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 57(2): 98-103, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38303560

RESUMO

The mammalian sirtuin family (SIRT1-SIRT7) has shown diverse biological roles in the regulation and maintenance of genome stability under genotoxic stress. SIRT7, one of the least studied sirtuin, has been demonstrated to be a key factor for DNA damage response (DDR). However, conflicting results have proposed that Sirt7 is an oncogenic factor to promote transformation in cancer cells. To address this inconsistency, we investigated properties of SIRT7 in hepatocellular carcinoma (HCC) regulation under DNA damage and found that loss of hepatic Sirt7 accelerated HCC progression. Specifically, the number, size, and volume of hepatic tumor colonies in diethylnitrosamine (DEN) injected Sirt7-deficient liver were markedly enhanced. Further, levels of HCC progression markers and pro-inflammatory cytokines were significantly elevated in the absence of hepatic Sirt7, unlike those in the control. In chromatin, SIRT7 was stabilized and colocalized to damage site by inhibiting the induction of γH2AX under DNA damage. Together, our findings suggest that SIRT7 is a crucial factor for DNA damage repair and that hepatic loss-of-Sirt7 can promote genomic instability and accelerate HCC development, unlike early studies describing that Sirt7 is an oncogenic factor [BMB Reports 2024; 57(2): 98-103].


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Animais , Humanos , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Dietilnitrosamina/toxicidade , Reparo do DNA , Dano ao DNA , Sirtuínas/genética , Sirtuínas/metabolismo , Mamíferos/metabolismo
2.
Drug Resist Updat ; 73: 101054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277756

RESUMO

AIMS: Sirtuin 7 (SIRT7) plays an important role in tumor development, and has been characterized as a potent regulator of cellular stress. However, the effect of SIRT7 on sorafenib acquired resistance remains unclear and a possible anti-tumor mechanism beyond this process in HCC has not been clarified. We examined the therapeutic potential of SIRT7 and determined whether it functions synergistically with sorafenib to overcome chemoresistance. METHODS: Cancer Genome Atlas-liver HCC data and unbiased gene set enrichment analyses were used to identify SIRT7 as a potential effector molecule in sorafenib acquired resistance. Two types of SIRT7 chemical inhibitors were developed to evaluate its therapeutic properties when synergized with sorafenib. Mass spectrometry was performed to discover a direct target of SIRT7, DDX3X, and DDX3X deacetylation levels and protein stability were explored. Moreover, an in vivo xenograft model was used to confirm anti-tumor effect of SIRT7 and DDX3X chemical inhibitors combined with sorafenib. RESULTS: SIRT7 inhibition mediated DDX3X depletion can re-sensitize acquired sorafenib resistance by disrupting NLRP3 inflammasome assembly, finally suppressing hyperactive ERK1/2 signaling in response to NLRP3 inflammasome-mediated IL-1ß inhibition. CONCLUSIONS: SIRT7 is responsible for sorafenib acquired resistance, and its inhibition would be beneficial when combined with sorafenib by suppressing hyperactive pro-cell survival ERK1/2 signaling.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuínas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Inflamassomos/metabolismo , Inflamassomos/farmacologia , Fosforilação , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Sistema de Sinalização das MAP Quinases , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , RNA Helicases DEAD-box/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Sirtuínas/farmacologia
3.
Elife ; 122023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36876915

RESUMO

During severe or chronic hepatic injury, biliary epithelial cells (BECs) undergo rapid activation into proliferating progenitors, a crucial step required to establish a regenerative process known as ductular reaction (DR). While DR is a hallmark of chronic liver diseases, including advanced stages of non-alcoholic fatty liver disease (NAFLD), the early events underlying BEC activation are largely unknown. Here, we demonstrate that BECs readily accumulate lipids during high-fat diet feeding in mice and upon fatty acid treatment in BEC-derived organoids. Lipid overload induces metabolic rewiring to support the conversion of adult cholangiocytes into reactive BECs. Mechanistically, we found that lipid overload activates the E2F transcription factors in BECs, which drive cell cycle progression while promoting glycolytic metabolism. These findings demonstrate that fat overload is sufficient to reprogram BECs into progenitor cells in the early stages of NAFLD and provide new insights into the mechanistic basis of this process, revealing unexpected connections between lipid metabolism, stemness, and regeneration.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Células Epiteliais/metabolismo , Divisão Celular , Lipídeos
4.
Oncogene ; 41(44): 4893-4904, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36195659

RESUMO

Cancer progression is associated with metabolic reprogramming and causes significant intracellular stress; however, the mechanisms that link cellular stress and growth signalling are not fully understood. Here, we identified a mechanism that couples the mitochondrial stress response (MSR) with tumour progression. We demonstrated that the MSR is activated in a significant proportion of human thyroid cancers via the upregulation of heat shock protein D family members and the mitokine, growth differentiation factor 15. Our study also revealed that MSR triggered AKT/S6K signalling by activating mTORC2 via activating transcription factor 4/sestrin 2 activation whilst promoting leucine transporter and nutrient-induced mTORC1 activation. Importantly, we found that an increase in mtDNA played an essential role in MSR-induced mTOR activation and that crosstalk between MYC and MSR potentiated mTOR activation. Together, these findings suggest that the MSR could be a predictive marker for aggressive human thyroid cancer as well as a useful therapeutic target.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias da Glândula Tireoide , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
5.
Adv Sci (Weinh) ; 9(17): e2200626, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35435331

RESUMO

Spermatogonial stem cells regenerate and maintain spermatogenesis throughout life, making testis a good model for studying stem cell biology. The effects of chemotherapy on fertility have been well-documented previously. This study investigates how busulfan, an alkylating agent that is often used for chemotherapeutic purposes, affects male fertility. Specifically, the role of the TGR5 pathway is investigated on spermatogonia homeostasis using in vivo, in vitro, and pharmacological methods. In vivo studies are performed using wild-type and Tgr5-deficient mouse models. The results clearly show that Tgr5 deficiency can facilitate restoration of the spermatogonia homeostasis and allow faster resurgence of germ cell lineage after exposure to busulfan. TGR5 modulates the expression of key genes of undifferentiated spermatogonia such as Gfra1 and Fgfr2. At the molecular level, the present data highlight molecular mechanisms underlying the interactions among the TGR5, GLIS2, and TP53 pathways in spermatogonia associated with germ cell apoptosis following busulfan exposure. This study makes a significant contribution to the literature because it shows that TGR5 plays key role on undifferentiated germ cell homeostasis and that modulating the TGR5 signaling pathway could be used as a potential therapeutic tool for fertility disorders.


Assuntos
Bussulfano , Resistencia a Medicamentos Antineoplásicos , Fatores de Transcrição Kruppel-Like , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Proteína Supressora de Tumor p53 , Animais , Bussulfano/metabolismo , Bussulfano/farmacologia , Homeostase , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Espermatogônias/metabolismo , Proteína Supressora de Tumor p53/genética
6.
J Hepatol ; 75(3): 634-646, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33872692

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC) is characterized by chronic inflammation and progressive fibrosis of the biliary tree. The bile acid receptor TGR5 (GPBAR1) is found on biliary epithelial cells (BECs), where it promotes secretion, proliferation and tight junction integrity. Thus, we speculated that changes in TGR5-expression in BECs may contribute to PSC pathogenesis. METHODS: TGR5-expression and -localization were analyzed in PSC livers and liver tissue, isolated bile ducts and BECs from Abcb4-/-, Abcb4-/-/Tgr5Tg and ursodeoxycholic acid (UDCA)- or 24-norursodeoxycholic acid (norUDCA)-fed Abcb4-/- mice. The effects of IL8/IL8 homologues on TGR5 mRNA and protein levels were studied. BEC gene expression was analyzed by single-cell transcriptomics (scRNA-seq) from distinct mouse models. RESULTS: TGR5 mRNA expression and immunofluorescence staining intensity were reduced in BECs of PSC and Abcb4-/- livers, in Abcb4-/- extrahepatic bile ducts, but not in intrahepatic macrophages. No changes in TGR5 BEC fluorescence intensity were detected in liver tissue of other liver diseases, including primary biliary cholangitis. Incubation of BECs with IL8/IL8 homologues, but not with other cytokines, reduced TGR5 mRNA and protein levels. BECs from Abcb4-/- mice had lower levels of phosphorylated Erk and higher expression levels of Icam1, Vcam1 and Tgfß2. Overexpression of Tgr5 abolished the activated inflammatory phenotype characteristic of Abcb4-/- BECs. NorUDCA-feeding restored TGR5-expression levels in BECs in Abcb4-/- livers. CONCLUSIONS: Reduced TGR5 levels in BECs from patients with PSC and Abcb4-/- mice promote development of a reactive BEC phenotype, aggravate biliary injury and thus contribute to the pathogenesis of sclerosing cholangitis. Restoration of biliary TGR5-expression levels represents a previously unknown mechanism of action of norUDCA. LAY SUMMARY: Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease-associated with progressive inflammation of the bile duct, leading to fibrosis and end-stage liver disease. Bile acid (BA) toxicity may contribute to the development and disease progression of PSC. TGR5 is a membrane-bound receptor for BAs, which is found on bile ducts and protects bile ducts from BA toxicity. In this study, we show that TGR5 levels were reduced in bile ducts from PSC livers and in bile ducts from a genetic mouse model of PSC. Our investigations indicate that lower levels of TGR5 in bile ducts may contribute to PSC development and progression. Furthermore, treatment with norUDCA, a drug currently being tested in a phase III trial for PSC, restored TGR5 levels in biliary epithelial cells.


Assuntos
Sistema Biliar/efeitos dos fármacos , Colangite Esclerosante/genética , Regulação para Baixo/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Animais , Sistema Biliar/metabolismo , Colangite Esclerosante/tratamento farmacológico , Colangite Esclerosante/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo/genética , Regulação para Baixo/fisiologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Virulência
7.
Biochim Biophys Acta Mol Basis Dis ; 1867(8): 166145, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33862147

RESUMO

Nuclear receptors play pleiotropic roles in cell differentiation, development, proliferation, and metabolic processes to govern liver physiology and pathology. The nuclear receptor, liver receptor homolog-1 (LRH-1, NR5A2), originally identified in the liver as a regulator of bile acid and cholesterol homeostasis, was recently recognized to coordinate a multitude of other hepatic metabolic processes, including glucose and lipid processing, methyl group sensing, and cellular stress responses. In this review, we summarize the physiological and pathophysiological functions of LRH-1 in the liver, as well as the molecular mechanisms underlying these processes. This review also focuses on the recent advances highlighting LRH-1 as an attractive target for liver-associated diseases, such as non-alcoholic fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC).


Assuntos
Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Humanos , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
8.
Am J Transplant ; 21(4): 1453-1464, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32986275

RESUMO

The role and underlying mechanism of plasma membrane-bound G protein-coupled bile acid receptor (TGR5) in regulating macrophage innate immune activation during liver ischemia and reperfusion (IR) injury remains largely unclear. Here, we demonstrated that TGR5 depletion in myeloid cells aggravated liver injury with increased macrophage infiltration and enhanced inflammation in livers post-IR. While TGR5 deficiency enhanced mobility and proinflammatory M1 polarization of macrophages, TGR5 agonist enhanced the anti-inflammatory effect of TGR5 both in vivo and in vitro. Microarray profiling revealed that TGR5-deficient macrophages exhibited enhanced proinflammatory characteristics and cathepsin E (Cat E) was the most upregulated gene. Knockdown of Cat E abolished the enhanced mobility and shift of macrophage phenotypes induced by TGR5 depletion. Moreover, Cat E knockdown attenuated liver IR injury and liver inflammation in myeloid TGR5-deficient mice. In patients undergoing partial hepatectomy, IR stress promoted TGR5 activation of CD11b+ cells in peripheral blood mononuclear cells, correlating with the shift in macrophage M2 polarization. Ursodeoxycholic acid administration enhanced TGR5 activation and the trend in macrophage M2 polarization. Our results suggest that TGR5 attenuates proinflammatory immune activation by restraining macrophage migration and facilitating macrophage M2 polarization via suppression of Cat E and thereby protects against liver IR injury.


Assuntos
Catepsina E , Fígado , Ativação de Macrófagos , Receptores Acoplados a Proteínas G , Traumatismo por Reperfusão , Animais , Humanos , Imunidade Inata , Isquemia , Leucócitos Mononucleares , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
9.
Nat Commun ; 11(1): 3416, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32651372

RESUMO

The recent demonstration that primary cells from the liver can be expanded in vitro as organoids holds enormous promise for regenerative medicine and disease modelling. The use of three-dimensional (3D) cultures based on ill-defined and potentially immunogenic matrices, however, hampers the translation of liver organoid technology into real-life applications. We here use chemically defined hydrogels for the efficient derivation of both mouse and human hepatic organoids. Organoid growth is found to be highly stiffness-sensitive, a mechanism independent of acto-myosin contractility and requiring instead activation of the Src family of kinases (SFKs) and yes-associated protein 1 (YAP). Aberrant matrix stiffness, on the other hand, results in compromised proliferative capacity. Finally, we demonstrate the establishment of biopsy-derived human liver organoids without the use of animal components at any step of the process. Our approach thus opens up exciting perspectives for the establishment of protocols for liver organoid-based regenerative medicine.


Assuntos
Fígado/citologia , Organoides/citologia , Humanos , Hidrogéis , Fígado/metabolismo , Organoides/metabolismo , Engenharia Tecidual/métodos , Fatores de Transcrição/metabolismo , Quinases da Família src/metabolismo
10.
Gastroenterology ; 159(3): 956-968.e8, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485177

RESUMO

BACKGROUND & AIMS: Renewal and patterning of the intestinal epithelium is coordinated by intestinal stem cells (ISCs); dietary and metabolic factors provide signals to the niche that control ISC activity. Bile acids (BAs), metabolites in the gut, signal nutrient availability by activating the G protein-coupled bile acid receptor 1 (GPBAR1, also called TGR5). TGR5 is expressed in the intestinal epithelium, but it is not clear how its activation affects ISCs and regeneration of the intestinal epithelium. We studied the role of BAs and TGR5 in intestinal renewal, and regulation of ISC function in mice and intestinal organoids. METHODS: We derived intestinal organoids from wild-type mice and Tgr5-/- mice, incubated them with BAs or the TGR5 agonist INT-777, and monitored ISC function by morphologic analyses and colony-forming assays. We disrupted Tgr5 specifically in Lgr5-positive ISCs in mice (Tgr5ISC-/- mice) and analyzed ISC number, proliferation, and differentiation by flow cytometry, immunofluorescence, and organoid assays. Tgr5ISC-/- mice were given cholecystokinin; we measured the effects of BA release into the intestinal lumen and on cell renewal. We induced colitis in Tgr5ISC-/- mice by administration of dextran sulfate sodium; disease severity was determined based on body weight, colon length, and histopathology analysis of colon biopsies. RESULTS: BAs and TGR5 agonists promoted growth of intestinal organoids. Administration of cholecystokinin to mice resulted in acute release of BAs into the intestinal lumen and increased proliferation of the intestinal epithelium. BAs and Tgr5 expression in ISCs were required for homeostatic intestinal epithelial renewal and fate specification, and for regeneration after colitis induction. Tgr5ISC-/- mice developed more severe colitis than mice without Tgr5 disruption in ISCs. ISCs incubated with INT-777 increased activation of yes-associated protein 1 (YAP1) and of its upstream regulator SRC. Inhibitors of YAP1 and SRC prevented organoid growth induced by TGR5 activation. CONCLUSIONS: BAs promote regeneration of the intestinal epithelium via activation of TGR5 in ISCs, resulting in activation of SRC and YAP and activation of their target genes. Release of endogenous BAs in the intestinal lumen is sufficient to promote ISC renewal and drives regeneration in response to injury.


Assuntos
Células-Tronco Adultas/fisiologia , Ácidos e Sais Biliares/metabolismo , Colite/patologia , Mucosa Intestinal/patologia , Receptores Acoplados a Proteínas G/metabolismo , Regeneração/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Autorrenovação Celular/efeitos dos fármacos , Autorrenovação Celular/fisiologia , Células Cultivadas , Ácidos Cólicos/farmacologia , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Organoides , Cultura Primária de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteínas de Sinalização YAP , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
11.
Front Immunol ; 11: 609060, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33692776

RESUMO

Nonalcoholic steatohepatitis (NASH) is a chronic liver disease associated with dysregulation of liver metabolism and inflammation. G-protein coupled bile acid receptor 1 (TGR5) is a cell surface receptor that is involved in multiple metabolic pathways. However, the functions of TGR5 in regulating macrophage innate immune activation in NASH remain unclear. Here, we found that TGR5 expression was decreased in liver tissues from humans and mice with NASH. Compared to wild type (WT) mice, TGR5-knockout (TGR5-/-) mice exhibited exacerbated liver damage, increased levels of proinflammatory factors, and enhanced M1 macrophage polarization. Moreover, TGR5 deficiency facilitated M1 macrophage polarization by promoting NLRP3 inflammasome activation and caspase-1 cleavage. Taken together, our findings revealed that TGR5 signaling attenuated liver steatosis and inflammation and inhibited NLRP3-mediated M1 macrophage polarization in NASH.


Assuntos
Inflamassomos/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Caspase 1/metabolismo , Humanos , Imunidade Inata/fisiologia , Fígado/metabolismo , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia
12.
Sci Adv ; 5(7): eaav9732, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31328159

RESUMO

LRH-1 (liver receptor homolog-1/NR5a2) is an orphan nuclear receptor, which regulates glucose and lipid metabolism, as well as intestinal inflammation via the transcriptional control of intestinal glucocorticoid synthesis. Predominantly expressed in epithelial cells, its expression and role in immune cells are presently enigmatic. LRH-1 was found to be induced in immature and mature T lymphocytes upon stimulation. T cell-specific deletion of LRH-1 causes a drastic loss of mature peripheral T cells. LRH-1-depleted CD4+ T cells exert strongly reduced activation-induced proliferation in vitro and in vivo and fail to mount immune responses against model antigens and to induce experimental intestinal inflammation. Similarly, LRH-1-deficient cytotoxic CD8+ T cells fail to control viral infections. This study describes a novel and critical role of LRH-1 in T cell maturation, functions, and immopathologies and proposes LRH-1 as an emerging pharmacological target in the treatment of T cell-mediated inflammatory diseases.


Assuntos
Imunomodulação , Receptores Citoplasmáticos e Nucleares/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Apoptose/genética , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Colite/etiologia , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Citotoxicidade Imunológica , Suscetibilidade a Doenças , Feminino , Deleção de Genes , Humanos , Isotipos de Imunoglobulinas/imunologia , Masculino , Camundongos , Receptores Citoplasmáticos e Nucleares/metabolismo
13.
JCI Insight ; 52019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31237863

RESUMO

Bile acids play a major role in the regulation of lipid and energy metabolism. Here we propose the hepatic bile acid uptake transporter Na+ taurocholate co-transporting polypeptide (NTCP) as a target to prolong postprandial bile acid elevations in plasma. Reducing hepatic clearance of bile acids from plasma by genetic deletion of NTCP moderately increased plasma bile acid levels, reduced diet-induced obesity, attenuated hepatic steatosis, and lowered plasma cholesterol levels. NTCP-G protein-coupled bile acid receptor (TGR5) double knockout mice were equally protected against diet-induced-obesity as NTCP single knockout mice. NTCP knockout mice displayed decreased intestinal fat absorption and a trend towards higher fecal energy output. Furthermore, NTCP deficiency was associated with an increased uncoupled respiration in brown adipose tissue, leading to increased energy expenditure. We conclude that targeting NTCP-mediated bile acid uptake can be a novel approach to treat obesity and obesity-related hepatosteatosis by simultaneously dampening intestinal fat absorption and increasing energy expenditure.


Assuntos
Dieta Hiperlipídica , Fígado Gorduroso/genética , Obesidade/genética , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Receptores Acoplados a Proteínas G/genética , Simportadores/genética , Aumento de Peso/genética , Tecido Adiposo Marrom/metabolismo , Animais , Ácidos e Sais Biliares/sangue , Glicemia/metabolismo , Peso Corporal , Colesterol/sangue , Gorduras na Dieta/metabolismo , Metabolismo Energético/genética , Fígado Gorduroso/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Absorção Intestinal/genética , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Triglicerídeos/sangue
14.
Sci Rep ; 9(1): 6913, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061415

RESUMO

To-date, most proteomic studies aimed at discovering tissue-based cancer biomarkers have compared the quantity of selected proteins between case and control groups. However, proteins generally function in association with other proteins to form modules localized in particular subcellular compartments in specialized cell types and tissues. Sub-cellular mislocalization of proteins has in fact been detected as a key feature in a variety of cancer cells. Here, we describe a strategy for tissue-biomarker detection based on a mitochondrial fold enrichment (mtFE) score, which is sensitive to protein abundance changes as well as changes in subcellular distribution between mitochondria and cytosol. The mtFE score integrates protein abundance data from total cellular lysates and mitochondria-enriched fractions, and provides novel information for the classification of cancer samples that is not necessarily apparent from conventional abundance measurements alone. We apply this new strategy to a panel of wild-type and mutant mice with a liver-specific gene deletion of Liver receptor homolog 1 (Lrh-1hep-/-), with both lines containing control individuals as well as individuals with liver cancer induced by diethylnitrosamine (DEN). Lrh-1 gene deletion attenuates cancer cell metabolism in hepatocytes through mitochondrial glutamine processing. We show that proteome changes based on mtFE scores outperform protein abundance measurements in discriminating DEN-induced liver cancer from healthy liver tissue, and are uniquely robust against genetic perturbation. We validate the capacity of selected proteins with informative mtFE scores to indicate hepatic malignant changes in two independent mouse models of hepatocellular carcinoma (HCC), thus demonstrating the robustness of this new approach to biomarker research. Overall, the method provides a novel, sensitive approach to cancer biomarker discovery that considers contextual information of tested proteins.


Assuntos
Biomarcadores Tumorais/metabolismo , Espaço Intracelular/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Neoplasias/metabolismo , Animais , Carcinogênese , Biologia Computacional , Citosol/metabolismo , Modelos Animais de Doenças , Camundongos , Mitocôndrias/metabolismo , Estadiamento de Neoplasias , Transporte Proteico , Aprendizado de Máquina não Supervisionado
15.
Nat Commun ; 9(1): 1488, 2018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662071

RESUMO

Type 1 diabetes mellitus (T1DM) is due to the selective destruction of islet beta cells by immune cells. Current therapies focused on repressing the immune attack or stimulating beta cell regeneration still have limited clinical efficacy. Therefore, it is timely to identify innovative targets to dampen the immune process, while promoting beta cell survival and function. Liver receptor homologue-1 (LRH-1) is a nuclear receptor that represses inflammation in digestive organs, and protects pancreatic islets against apoptosis. Here, we show that BL001, a small LRH-1 agonist, impedes hyperglycemia progression and the immune-dependent inflammation of pancreas in murine models of T1DM, and beta cell apoptosis in islets of type 2 diabetic patients, while increasing beta cell mass and insulin secretion. Thus, we suggest that LRH-1 agonism favors a dialogue between immune and islet cells, which could be druggable to protect against diabetes mellitus.


Assuntos
Comunicação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/terapia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Fenalenos/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Insulina/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/patologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/imunologia , Estreptozocina , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Transplante Heterólogo
16.
Mol Metab ; 11: 84-95, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29656109

RESUMO

OBJECTIVE: Bile acids (BAs) facilitate fat absorption and may play a role in glucose and metabolism regulation, stimulating the secretion of gut hormones. The relative importance and mechanisms involved in BA-stimulated secretion of appetite and metabolism regulating hormones from the gut and pancreas is not well described and was the purpose of this study. METHODS: The effects of bile acids on the secretion of gut and pancreatic hormones was studied in rats and compared to the most well described nutritional secretagogue: glucose. The molecular mechanisms that underlie the secretion was studied by isolated perfused rat and mouse small intestine and pancreas preparations and supported by immunohistochemistry, expression analysis, and pharmacological studies. RESULTS: Bile acids robustly stimulate secretion of not only the incretin hormones, glucose-dependent insulinotropic peptide (GIP), and glucagon-like peptide-1 (GLP-1), but also glucagon and insulin in vivo, to levels comparable to those resulting from glucose stimulation. The mechanisms of GLP-1, neurotensin, and peptide YY (PYY) secretion was secondary to intestinal absorption and depended on activation of basolateral membrane Takeda G-protein receptor 5 (TGR5) receptors on the L-cells in the following order of potency: Lithocholic acid (LCA) >Deoxycholicacid (DCA)>Chenodeoxycholicacid (CDCA)> Cholic acid (CA). Thus BAs did not stimulate secretion of GLP-1 and PYY from perfused small intestine in TGR5 KO mice but stimulated robust responses in wild type littermates. TGR5 is not expressed on α-cells or ß-cells, and BAs had no direct effects on glucagon or insulin secretion from the perfused pancreas. CONCLUSION: BAs should be considered not only as fat emulsifiers but also as important regulators of appetite- and metabolism-regulating hormones by activation of basolateral intestinal TGR5.


Assuntos
Ácidos e Sais Biliares/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Mucosa Intestinal/metabolismo , Pâncreas/metabolismo , Peptídeo YY/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
17.
Nature ; 554(7693): 533-537, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29443959

RESUMO

Chronic inflammation increases the risk of developing one of several types of cancer. Inflammatory responses are currently thought to be controlled by mechanisms that rely on transcriptional networks that are distinct from those involved in cell differentiation. The orphan nuclear receptor NR5A2 participates in a wide variety of processes, including cholesterol and glucose metabolism in the liver, resolution of endoplasmic reticulum stress, intestinal glucocorticoid production, pancreatic development and acinar differentiation. In genome-wide association studies, single nucleotide polymorphisms in the vicinity of NR5A2 have previously been associated with the risk of pancreatic adenocarcinoma. In mice, Nr5a2 heterozygosity sensitizes the pancreas to damage, impairs regeneration and cooperates with mutant Kras in tumour progression. Here, using a global transcriptomic analysis, we describe an epithelial-cell-autonomous basal pre-inflammatory state in the pancreas of Nr5a2+/- mice that is reminiscent of the early stages of pancreatitis-induced inflammation and is conserved in histologically normal human pancreases with reduced expression of NR5A2 mRNA. In Nr5a2+/-mice, NR5A2 undergoes a marked transcriptional switch, relocating from differentiation-specific to inflammatory genes and thereby promoting gene transcription that is dependent on the AP-1 transcription factor. Pancreatic deletion of Jun rescues the pre-inflammatory phenotype, as well as binding of NR5A2 to inflammatory gene promoters and the defective regenerative response to damage. These findings support the notion that, in the pancreas, the transcriptional networks involved in differentiation-specific functions also suppress inflammatory programmes. Under conditions of genetic or environmental constraint, these networks can be subverted to foster inflammation.


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica , Inflamação/genética , Pâncreas/metabolismo , Pâncreas/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcriptoma , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Cromatina/genética , Cromatina/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Redes Reguladoras de Genes/genética , Genes jun/genética , Heterozigoto , Humanos , Camundongos , Especificidade de Órgãos/genética , Pancreatite/genética , Regiões Promotoras Genéticas/genética , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética , Fator de Transcrição AP-1/metabolismo
18.
J Endocr Soc ; 2(1): 24-41, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29379893

RESUMO

In mouse ovaries, liver receptor homolog-1 [nuclear receptor subfamily 5, group A, member 2 (Nr5a2)] expression is restricted to granulosa cells. Mice with Nr5a2 depletion in this cell population fail to ovulate. To determine whether Nr5a2 is essential for granulosa cell proliferation during follicular maturation, we generated granulosa-specific conditional knockout mice (genotype Nr5a2 floxed Cre-recombinase driven by the anti-Müllerian type II receptor, hereafter cKO) with Nr5a2 depletion from primary follicles forward. Proliferation in cKO granulosa cells was substantially reduced relative to control (CON) counterparts, as assessed by bromodeoxyuridine incorporation, proliferative cell nuclear antigen expression, and fluorescent-activated cell sorting. Microarray analysis revealed >2000 differentially regulated transcripts between cKO and CON granulosa cells. Major gene ontology pathways disrupted were proliferation, steroid biosynthesis, female gamete formation, and ovulatory cycle. Transcripts for key cell-cycle genes, including Ccnd1, Ccnd2, Ccne1, Ccne2, E2f1, and E2f2, were in reduced abundance. Transcripts from other cell-cycle-related factors, including Cdh2, Plagl1, Cdkn1a, Prkar2b, Gstm1, Cdk7, and Pts, were overexpressed. Although the follicle-stimulating hormone and estrogen receptors were overexpressed in the cKO animals, in vivo treatment with estradiol-17ß failed to rescue decreased proliferation. In vitro inactivation of Nr5a2 using the ML180 reverse agonist similarly decreased cell-cycle-related gene transcripts and downstream targets, as in cKO mice. Pharmacological inhibition of ß-catenin, an Nr5a2 cofactor, decreased cyclin gene transcripts and downstream targets. Terminal deoxynucleotidyltransferase-mediated deoxyuridine triphosphate nick end labeling immunofluorescence and quantitative polymerase chain reaction of pro/antiapoptotic and autophagic markers showed no differences between cKO and CON granulosa cells. Thus, Nr5a2 is essential for granulosa cell proliferation, but its depletion does not alter the frequency of apoptosis nor autophagy.

19.
Biol Reprod ; 96(6): 1231-1243, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28520915

RESUMO

The orphan nuclear receptor, liver receptor homolog-1 (aka Nuclear receptor subfamily 5, Group A, Member 2 (Nr5a2)), is widely expressed in mammalian tissues, and its ovarian expression is restricted to granulosa cells of activated follicles. We employed the floxed Nr5a2 (Nr5a2f/f) mutant mouse line and two granulosa-specific Cre lines, Anti-Müllerian hormone receptor- 2 (Amhr2Cre) and transgenic cytochrome P450 family 19 subfamily A polypeptide 1 (tgCyp19Cre), to develop two tissue- and time-specific Nr5a2 depletion models: Nr5a2Amhr2-/- and Nr5a2Cyp19-/-. In the Nr5a2Cyp19-/- ovaries, Nr5a2 was depleted in mural granulosa, but not cumulus cells. We induced follicular development in mutant and wild-type (control, CON) mice with equine chorionic gonadotropin followed 44 h later treatment with human chorionic gonadotropin (hCG) to induce ovulation. Both Nr5a2Amhr2-/- and Nr5a2Cyp19-/- cumulus-oocyte complexes underwent a reduced degree of expansion in vitro relative to wild-type mice. We found downregulation of epiregulin (Ereg), amphiregulin (Areg), betacellulin (Btc) and tumor necrosis factor stimulated gene-6 (Tnfaip6) transcripts in Nr5a2Amhr2-/- and Nr5a2Cyp19-/- ovaries. Tnfaip6 protein abundance, by quantitative immunofluorescence, was likewise substantially reduced in the Nr5a2-depleted model. Transcript abundance for connexin 43 (Gja1) in granulosa cells was lower at 0 h and maximum at 8 h post-hCG in both Nr5a2Amhr2-/- and Nr5a2Cyp19-/- follicles, while Gja1 protein was not different prior to the ovulatory signal, but elevated at 8 h in Nr5a2Amhr2-/- and Nr5a2Cyp19-/- follicles. In both mutant genotypes, oocytes can mature in vivo and resulting embryos were capable of proceeding to blastocyst stagein vitro. We conclude that Nr5a2 is essential for cumulus expansion in granulosa cells throughout follicular development. The disruption of Nr5a2 in follicular somatic cells does not affect the capacity of the oocyte to be fertilized by intracytoplasmic sperm injection.


Assuntos
Células do Cúmulo/fisiologia , Ovário/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Injeções de Esperma Intracitoplásmicas/métodos , Animais , Conexina 43/genética , Conexina 43/metabolismo , Ciclo Estral , Feminino , Fertilização/fisiologia , Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Masculino , Camundongos , Oócitos/fisiologia , Ovário/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/genética
20.
FASEB J ; 31(9): 3848-3857, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28487283

RESUMO

Bile acids and epithelial-derived human ß-defensins (HßDs) are known to be important factors in the regulation of colonic mucosal barrier function and inflammation. We hypothesized that bile acids regulate colonic HßD expression and aimed to test this by investigating the effects of deoxycholic acid (DCA) and ursodeoxycholic acid on the expression and release of HßD1 and HßD2 from colonic epithelial cells and mucosal tissues. DCA (10-150 µM) stimulated the release of both HßD1 and HßD2 from epithelial cell monolayers and human colonic mucosal tissue in vitro In contrast, ursodeoxycholic acid (50-200 µM) inhibited both basal and DCA-induced defensin release. Effects of DCA were mimicked by the Takeda GPCR 5 agonist, INT-777 (50 µM), but not by the farnesoid X receptor agonist, GW4064 (10 µM). INT-777 also stimulated colonic HßD1 and HßD2 release from wild-type, but not Takeda GPCR 5-/-, mice. DCA stimulated phosphorylation of the p65 subunit of NF-κB, an effect that was attenuated by ursodeoxycholic acid, whereas an NF-κB inhibitor, BMS-345541 (25 µM), inhibited DCA-induced HßD2, but not HßD1, release. We conclude that bile acids can differentially regulate colonic epithelial HßD expression and secretion and discuss the implications of our findings for intestinal health and disease.-Lajczak, N. K., Saint-Criq, V., O'Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., Keely, S. J. Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human ß-defensin-1 and -2 secretion by colonic epithelial cells.


Assuntos
Colo/citologia , Ácido Desoxicólico/farmacologia , Mucosa Intestinal/citologia , Ácido Ursodesoxicólico/farmacologia , beta-Defensinas/metabolismo , Animais , Linhagem Celular , Ácido Desoxicólico/administração & dosagem , Relação Dose-Resposta a Droga , Células Epiteliais , Humanos , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Técnicas de Cultura de Tecidos , Ácido Ursodesoxicólico/administração & dosagem , beta-Defensinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA