Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Schizophr Res ; 228: 124-133, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33434726

RESUMO

Imaging and postmortem studies indicate that schizophrenia subjects exhibit abnormal connectivity in several white matter tracts, including the cingulum bundle. Copper chelators given to experimental animals damage myelin and myelin-producing oligodendrocytes, and the substantia nigra of schizophrenia subjects shows lower levels of copper, copper transporters, and copper-utilizing enzymes. This study aimed to elucidate the potential role of copper homeostasis in white matter pathology in schizophrenia. Protein levels of the copper transporters ATP7A and CTR1, and dysbindin-1, an upstream modulator of copper metabolism and schizophrenia susceptibility factor, were measured using Western blot analyses of the postmortem cingulum bundle of schizophrenia subjects (n=16) and matched controls (n=13). Additionally, the patient group was subdivided by treatment status: off- (n=8) or on-medication (n=8). Relationships between proteins from the current study were correlated among themselves and markers of axonal integrity previously measured in the same cohort. Schizophrenia subjects exhibited similar protein levels to controls, with no effect of antipsychotic treatment. The dysbindin-1A/1BC relationship was positive in controls and schizophrenia subjects; however, antipsychotic treatment appeared to reverse this relationship in a statistically different manner from that of controls and unmedicated subjects. The relationships between dysbindin-1A/neurofilament heavy and ATP7A/α-tubulin were positively correlated in the schizophrenia group that was significantly different from the lack of correlation in controls. Copper transporters and dysbindin-1 appear to be more significantly affected in the grey matter of schizophrenia subjects. However, the relationships among proteins in white matter may be more substantial and dependent on treatment status.


Assuntos
Antipsicóticos , Cobre/metabolismo , Esquizofrenia , Substância Branca , Antipsicóticos/uso terapêutico , Transportador de Cobre 1 , ATPases Transportadoras de Cobre , Disbindina/metabolismo , Humanos , Esquizofrenia/tratamento farmacológico , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo
2.
Brain Res Bull ; 164: 339-349, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32795490

RESUMO

BACKGROUND AND PURPOSE: DTNBP1 gene variation and lower dysbindin-1 protein are associated with schizophrenia. Previous evidence suggests that downregulated dysbindin-1 expression results in lower expression of copper transporters ATP7A (intracellular copper transporter) and SLC31A1 (CTR1; extracellular copper transporter), which are required for copper transport across the blood brain barrier. However, whether antipsychotic medications used for schizophrenia treatment may modulate these systems is unclear. EXPERIMENTAL APPROACH: The current study measured behavioral indices of neurological function in dysbindin-1 functional knockout (KO) mice and their wild-type (WT) littermates with or without quetiapine treatment. We assessed serum and brain copper levels, ATP7A and CTR1 mRNA, and copper transporter-expressing cellular population transcripts: TTR (transthyretin; choroid plexus epithelial cells), MBP (myelin basic protein; oligodendrocytes), and GJA1 (gap-junction protein alpha-1; astrocytes) in cortex and hippocampus. KEY RESULTS: Regardless of genotype, quetiapine significantly reduced TTR, MBP, CTR1 mRNA, and serum copper levels. Neurological function of untreated KO mice was abnormal, and ledge instability was rescued with quetiapine. KO mice were hyperactive after 10 min in the open-field assay, which was not affected by treatment. CONCLUSIONS AND IMPLICATIONS: Dysbindin-1 KO results in hyperactivity, altered serum copper, and neurological impairment, the last of which is selectively rescued with quetiapine. Antipsychotic treatment modulates specific cellular populations, affecting myelin, the choroid plexus, and copper transport across the blood brain barrier. Together these results indicate the widespread impact of antipsychotic treatment, and that alteration of dysbindin-1 may be sufficient, but not necessary, for specific schizophrenia pathology.


Assuntos
Encéfalo/metabolismo , Cobre/metabolismo , Disbindina/genética , Esquizofrenia/genética , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Encéfalo/efeitos dos fármacos , Transportador de Cobre 1/genética , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/genética , ATPases Transportadoras de Cobre/metabolismo , Camundongos , Camundongos Knockout , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/uso terapêutico , Fatores de Risco , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
3.
World J Biol Psychiatry ; 21(1): 13-28, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30230404

RESUMO

Objectives: Several schizophrenia brain regions exhibit decreased dysbindin. Dysbindin modulates copper transport crucial for myelination, monoamine metabolism and cellular homeostasis. Schizophrenia patients (SZP) exhibit increased plasma copper, while copper-decreasing agents produce schizophrenia-like behavioural and pathological abnormalities. Therefore, we sought to determine dysbindin and copper transporter protein expression and copper content in SZP.Methods: We studied the copper-rich substantia nigra (SN) using Western blot and inductively-coupled plasma mass spectrometry. We characterised specific protein domains of copper transporters ATP7A, CTR1, ATP7B and dysbindin isoforms 1 A and 1B/C in SZP (n = 15) and matched controls (n = 11), and SN copper content in SZP (n = 14) and matched controls (n = 11). As a preliminary investigation, we compared medicated (ON; n = 11) versus unmedicated SZP (OFF; n = 4).Results: SZP exhibited increased C terminus, but not N terminus, ATP7A. SZP expressed less transmembrane CTR1 and dysbindin 1B/C than controls. ON exhibited increased C terminus ATP7A protein versus controls. OFF exhibited less N terminus ATP7A protein than controls and ON, suggesting medication-induced rescue of the ATP7A N terminus. SZP exhibited less SN copper content than controls.Conclusions: These results provide the first evidence of disrupted copper transport in schizophrenia SN that appears to result in a copper-deficient state. Furthermore, copper homeostasis may be modulated by specific dysbindin isoforms and antipsychotic treatment.


Assuntos
Encéfalo/patologia , Transportador de Cobre 1/metabolismo , ATPases Transportadoras de Cobre/metabolismo , Cobre/metabolismo , Disbindina/metabolismo , Esquizofrenia/genética , Estudos de Casos e Controles , Cobre/deficiência , Humanos , Espectrometria de Massas , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA