Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37895955

RESUMO

Mesenchymal stromal cells (MSCs) obtained from bone marrow are a promising tool for regenerative medicine, including kidney diseases. A step forward in MSCs studies is cellular conditioning through specific minerals and vitamins. The Omega-3 fatty acids (ω3) are essential in regulating MSCs self-renewal, cell cycle, and survival. The ω3 could act as a ligand for peroxisome proliferator-activated receptor gamma (PPAR-γ). This study aimed to demonstrate that ω3 supplementation in rats could lead to the up-regulation of PPAR-γ in the MSCs. The next step was to compare the effects of these MSCs through allogeneic transplantation in rats subjected to unilateral ureteral obstruction (UUO). Independent of ω3 supplementation in the diet of the rats, the MSCs in vitro conserved differentiation capability and phenotypic characteristics. Nevertheless, MSCs obtained from the rats supplemented with ω3 stimulated an increase in the expression of PPAR-γ. After allogeneic transplantation in rats subjected to UUO, the ω3 supplementation in the rats enhanced some nephroprotective effects of the MSCs through a higher expression of antioxidant enzyme (SOD-1), anti-inflammatory marker (IL-10), and lower expression of the inflammatory marker (IL-6), and proteinuria.

2.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484784

RESUMO

Abstract Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1 in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1 and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.

3.
J. venom. anim. toxins incl. trop. dis ; 27: e20200187, 2021. tab, graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1351016

RESUMO

Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.(AU)


Assuntos
Obstrução Ureteral , Vesículas Extracelulares , Nefropatias , Hipóxia , Estresse Oxidativo
4.
Nutrients ; 12(6)2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492810

RESUMO

Several studies have demonstrated an important association between altered lipid metabolism and the development of kidney injury because of a high-fat diet. Fructose is also closely associated with renal injury. We opted for a combination of fructose and saturated fats in a diet (DH) that is a model known to induce renal damage in order to evaluate whether soy isoflavones could have promising use in the treatment of renal alterations. After two months of ingestion, there was an expansion of visceral fat, which was associated with long-term metabolic disorders, such as sustained hyperglycemia, insulin resistance, polyuria, dyslipidemia, and hypertension. Additionally, we found a decrease in renal blood flow and an increase in renal vascular resistance. Biochemical markers of chronic kidney disease were detected; there was an infiltration of inflammatory cells with an elevated expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1ß), the activation of the renin-angiotensin system, and oxidative/nitrosative stress. Notably, in rats exposed to the DH diet for 120 days, the concomitant treatment with isoflavones after 60 days was able to revert metabolic parameters, renal alterations, and oxidative/nitrosative stress. The beneficial effects of isoflavones in the kidney of the obese rats were found to be mediated by expression of peroxisome proliferator-activated receptor gamma (PPAR-γ).


Assuntos
Frutose/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Rim/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fitoterapia , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Animais , Citocinas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/efeitos adversos , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Rim/irrigação sanguínea , Masculino , Obesidade/etiologia , Obesidade/genética , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/genética
5.
J. bras. nefrol ; 41(4): 451-461, Out.-Dec. 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1056616

RESUMO

ABSTRACT Hypertension and Diabetes mellitus are the two main causes of chronic kidney disease that culminate in the final stage of kidney disease. Since these two risk factors are common and can overlap, new approaches to prevent or treat them are needed. Macitentan (MAC) is a new non-selective antagonist of the endothelin-1 (ET-1) receptor. This study aimed to evaluate the effect of chronic blockade of ET-1 receptor with MAC on the alteration of renal function observed in hypertensive and hyperglycemic animals. Genetically hypertensive rats were divided into control hypertensive (HT-CTL) group, hypertensive and hyperglycemic (HT+DIAB) group, and hypertensive and hyperglycemic group that received 25 mg/kg macitentan (HT-DIAB+MAC25) via gavage for 60 days. Kidney function and parameters associated with oxidative and nitrosative stress were evaluated. Immunohistochemistry for neutrophil gelatinase-associated lipocalin (NGAL), ET-1, and catalase in the renal cortex was performed. The HT+DIAB group showed a decrease in kidney function and an increase in NGAL expression in the renal cortex, as well as an increase in oxidative stress. MAC treatment was associated with attenuated ET-1 and NGAL production and increases in antioxidant defense (catalase expression) and nitric oxide production. In addition, MAC prevented an increase in oxidant injury (as measured by urinary hydroperoxide and lipid peroxidation), thus improving renal function. Our results suggest that the antioxidant effect of the ET-1 receptor antagonist MAC is involved in the improvement of kidney function observed in hypertensive and hyperglycemic rats.


RESUMO Hipertensão e Diabetes Mellitus figuram como as duas principais causas de doença renal crônica que culmina em doença renal terminal. Uma vez que os dois fatores de risco são comuns e podem se sobrepor, novas abordagens preventivas e terapêuticas se fazem necessárias. O macitentan (MAC) é um novo antagonista não-seletivo dos receptores da endotelina-1 (ET-1). O presente estudo teve como objetivo avaliar os efeitos do bloqueio crônico dos receptores da ET-1 com MAC sobre a alteração da função renal em animais hipertensos e hiperglicêmicos. Ratos geneticamente hipertensos foram divididos em grupos com animais hipertensos de controle (HT-CTL), hipertensos e hiperglicêmicos (HT+DIAB) e hipertensos e hiperglicêmicos tratados com 25 mg/kg de macitentan (HT-DIAB+MAC25) via gavagem por 60 dias. Foram avaliados função renal e parâmetros associados ao estresse oxidativo e nitrosativo. Exames de imunoistoquímica foram realizados para lipocalina associada à gelatinase neutrofílica (NGAL), ET-1 e catalase no córtex renal. O grupo HT+DIAB exibiu diminuição da função renal e aumento na expressão de NGAL no córtex renal, bem como estresse oxidativo aumentado. O tratamento com MAC foi associado a atenuação da produção de ET-1 e NGAL e maior ativação das defesas antioxidantes (expressão de catalase) e elevação da produção de óxido nítrico. Além disso, o MAC evitou exacerbação da lesão oxidante (medida por hidroperóxidos urinários e peroxidação lipídica), melhorando assim a função renal. Nossos resultados sugerem que o efeito antioxidante do antagonista dos receptores da ET-1 MAC esteja imbricado no aprimoramento da função renal observada em ratos hipertensos e hiperglicêmicos.


Assuntos
Humanos , Animais , Masculino , Hiperglicemia/complicações , Rim/efeitos dos fármacos , Antioxidantes/farmacologia , Ratos/genética , Fatores de Risco , Endotelina-1/metabolismo , Administração Intravenosa , Antagonistas dos Receptores de Endotelina/administração & dosagem , Antagonistas dos Receptores de Endotelina/uso terapêutico , Hiperglicemia/induzido quimicamente , Hipertensão/complicações , Hipertensão/fisiopatologia , Rim/fisiopatologia , Rim/lesões , Antibióticos Antineoplásicos/administração & dosagem
6.
J Bras Nefrol ; 41(4): 451-461, 2019.
Artigo em Inglês, Português | MEDLINE | ID: mdl-31508666

RESUMO

Hypertension and Diabetes mellitus are the two main causes of chronic kidney disease that culminate in the final stage of kidney disease. Since these two risk factors are common and can overlap, new approaches to prevent or treat them are needed. Macitentan (MAC) is a new non-selective antagonist of the endothelin-1 (ET-1) receptor. This study aimed to evaluate the effect of chronic blockade of ET-1 receptor with MAC on the alteration of renal function observed in hypertensive and hyperglycemic animals. Genetically hypertensive rats were divided into control hypertensive (HT-CTL) group, hypertensive and hyperglycemic (HT+DIAB) group, and hypertensive and hyperglycemic group that received 25 mg/kg macitentan (HT-DIAB+MAC25) via gavage for 60 days. Kidney function and parameters associated with oxidative and nitrosative stress were evaluated. Immunohistochemistry for neutrophil gelatinase-associated lipocalin (NGAL), ET-1, and catalase in the renal cortex was performed. The HT+DIAB group showed a decrease in kidney function and an increase in NGAL expression in the renal cortex, as well as an increase in oxidative stress. MAC treatment was associated with attenuated ET-1 and NGAL production and increases in antioxidant defense (catalase expression) and nitric oxide production. In addition, MAC prevented an increase in oxidant injury (as measured by urinary hydroperoxide and lipid peroxidation), thus improving renal function. Our results suggest that the antioxidant effect of the ET-1 receptor antagonist MAC is involved in the improvement of kidney function observed in hypertensive and hyperglycemic rats.


Assuntos
Antioxidantes/farmacologia , Hiperglicemia/complicações , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/fisiopatologia , Administração Intravenosa , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antagonistas do Receptor de Endotelina A/administração & dosagem , Antagonistas do Receptor de Endotelina A/uso terapêutico , Endotelina-1/metabolismo , Humanos , Hiperglicemia/induzido quimicamente , Hipertensão/complicações , Hipertensão/fisiopatologia , Rim/lesões , Rim/fisiopatologia , Lipocalina-2/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Ratos/genética , Fatores de Risco , Estreptozocina/administração & dosagem , Sulfonamidas/administração & dosagem , Sulfonamidas/uso terapêutico
7.
PeerJ ; 7: e7219, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31333903

RESUMO

BACKGROUND: Hypotension, increased production of reactive oxygen species, and inflammation are all observed in experimental models of sepsis induced by lipopolysaccharide (LPS). PURPOSE: The aim of this study was to evaluate the effects of an ethanolic extract of Brazilian olive leaf (Ex), Brazilian olive oil (Olv), Ex + Olv (ExOlv), and palm oil (Pal) in comparison to the effects of omega-3 fish oil (Omg) in a rat model of sepsis-induced acute kidney injury. MATERIALS: Wistar rats were divided into seven groups (seven per group), which were either untreated (control) or treated with LPS, LPS + Ex, LPS + ExOlv, LPS + Olv, LPS + Omg, or LPS + Pal. RESULTS: Lower values of creatinine clearance and blood pressure were observed in the LPS-treated group, and these values were not affected by Ex, Olv, ExOlv, Pal, or Omg treatment. Mortality rates were significantly lower in rats exposed to LPS when they were also treated with Ex, ExOlv, Olv, Pal, or Omg. These treatments also decreased oxidative stress and inflammation (Tumor necrosis factor alpha, interleukin-1 beta) and increased interleukin-10 levels and cell proliferation, which were associated with decreased apoptosis in kidney tissue. CONCLUSION: Ex and Pal treatments were beneficial in septic rats, since they increased survival rate and did not aggravate inflammation. However, the most effective treatments for septic rats were Olv in comparison to Omg. These natural food substances could enable the development of effective therapeutic interventions to sepsis.

8.
Oncotarget ; 10(10): 1102-1118, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30800221

RESUMO

EMT occurs in response to a number of stresses conditions as mechanical stretch, cancer, hypoxia, oxidative stress (ROS), among others. EMT describes a phenotypical change induced in epithelial cells. It is characterized by increases in motility, extracellular matrix synthesis, proliferation, and invasiveness. The present study analyzed if oxalate ions (Ox) could induce EMT in IMCD cells. Ox (0.5 mM) and transforming growth factor beta (TGF-ß1 20 ng/mL) exposition during 48 hours increased migration and invasiveness, increased mesenchymal marker expression (Vimentin, alpha-smooth muscle actin: α-SMA, TGF-ß1) and decreased epithelial marker expression (E-cadherin). IMCD stimulated with Ox and TGF-ß1 and then exposed to the osteogenic medium during 15 days significantly increased early osteogenic markers (RUNX-2 and Alkaline Phosphatase) expression. Hyperoxaluric mice fed with trans-4-hydroxy-L-proline (HPL) presented calcium oxalate crystal excretion, increased in TGF-ß1 expression and collagen fibers deposition and increased early osteogenic markers (RUNX-2 and Alkaline Phosphatase) at 60 days. Our in vitro and in vivo results suggest that oxalate induces EMT in inner medulla collecting duct cells and it may be involved in fibrotic tissue development, osteogenic differentiation and calcium crystal production both implicated in nephrolithiasis.

9.
Stem Cells Cloning ; 11: 77-83, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510433

RESUMO

Bone marrow mesenchymal stromal cell (MSC) is a potential alternative in regenerative medicine and has great potential in many pathologic conditions including kidney disease. Although most of the studies demonstrate MSC efficiency, the regenerative potential may not be efficient in all diseases and patients. Stem cell feasibility is modified by donor characteristics as gender, age, diet, and health status, producing both positive and negative results. The conditioning of MSC can potentiate its effects and modify its culture medium (CM). In current practices, the cell-free treatment is gaining notable attention, while MSC-conditioned CM is being applied and studied in many experimental diseases, including, but not limited to, certain kidney diseases. This may be the next step for clinical trials. Studies in stem cell CM have focused mainly on extracellular vesicles, nucleic acids (mRNA and microRNA), lipids, and proteins presented in this CM. They mediate regenerative effects of MSC in a harmonic manner. In this review, we will analyze the regenerative potential of MSC and its CM as well as discuss some effective techniques for modifying its fractions and improving its therapeutic potential. CM fractions may be modified by hypoxic conditions, inflammation, lipid exposition, and protein growth factors. Other possible mechanisms of action of stem cells are also suggested. In the future, the MSC paracrine effect may be modified to more closely meet each patient's needs.

10.
Int J Immunopathol Pharmacol ; 32: 2058738418772210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29786457

RESUMO

Xanthine oxidase activation occurs in sepsis and results in the generation of uric acid (UrAc) and reactive oxygen species (ROS). We aimed to evaluate the effect of xanthine oxidase inhibitors (XOis) in rats stimulated with lipopolysaccharide (LPS). LPS (10 mg/kg) was administered intraperitoneally (i.p.) immediately after allopurinol (Alo, 2 mg/kg) or febuxostat (Feb, 1 mg/kg) every 24 h for 3 days. To increase UrAc levels, oxonic acid (Oxo) was administered by gavage (750 mg/kg per day) for 5 days. Animals were divided into the following 10 groups (n = 6 each): (1) Control, (2) Alo, (3) Feb, (4) LPS, (5) LPSAlo, (6) LPSFeb, (7) Oxo, (8) OxoLPS, (9) OxoLPSAlo, and (10) OxoLPSFeb. Feb with or without Oxo did not aggravate sepsis. LPS administration (with or without Oxo) significantly decreased the creatinine clearance (ClCr) in LPSAlo (60%, P < 0.01) versus LPS (44%, P < 0.05) and LPSFeb (35%, P < 0.05). Furthermore, a significant increase in mortality was observed with LPSAlo (28/34, 82%) compared to LPS treatment alone (10/16, 63%) and LPSFeb (11/17, 65%, P < 0.05). In addition, increased levels of thiobarbituric acid reactive substances (TBARS), tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 were observed at 72 h compared to the groups that received LPS and LPSFeb with or without Oxo. In this study, coadministration of Alo in LPS-induced experimental sepsis aggravated septic shock, leading to mortality, renal function impairment, and high ROS and proinflammatory IL levels. In contrast, administration of Feb did not potentiate sepsis, probably because it did not interfere with other metabolic events.


Assuntos
Alopurinol/toxicidade , Inibidores Enzimáticos/toxicidade , Febuxostat/toxicidade , Sepse/induzido quimicamente , Sepse/tratamento farmacológico , Xantina Oxidase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Interleucina-10/sangue , Interleucina-6/sangue , Rim/efeitos dos fármacos , Rim/enzimologia , Rim/patologia , Lipopolissacarídeos , Masculino , Ácido Oxônico/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Sepse/sangue , Sepse/enzimologia , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Fatores de Tempo , Fator de Necrose Tumoral alfa/sangue , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo
11.
Pediatr Nephrol ; 33(9): 1457-1465, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28735502

RESUMO

The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.


Assuntos
Injúria Renal Aguda/terapia , Rim/fisiologia , Regeneração , Medicina Regenerativa/métodos , Insuficiência Renal Crônica/prevenção & controle , Injúria Renal Aguda/fisiopatologia , Animais , Órgãos Artificiais , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/fisiologia , Humanos , Rim/citologia , Transplante de Rim/métodos , Transplante de Rim/tendências , Células-Tronco Mesenquimais/fisiologia , Medicina Regenerativa/tendências , Terapia de Substituição Renal/métodos , Terapia de Substituição Renal/tendências , Engenharia Tecidual/métodos , Engenharia Tecidual/tendências
12.
Biochimie ; 135: 137-148, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28229902

RESUMO

We have previously reported decreased expression and activities of lysosomal cathepsins B and L in diabetic kidney. Relevant morphological changes were observed in proximal tubules, suggesting that these cells are implicated in the early stages of the disease. The aim of the present study was to investigate the mechanisms that lead to these changes. The effects of high glucose (HG) and advanced glycation end products (AGEs) on cell viability, lysosomal enzymes and other effectors of cell signaling of cultured kidney cells were studied. HG increased viable mesangial cells (ihMC) in 48 h, while epithelial tubular cells were not affected (LLC-PK1 and MDCK). In contrast, the number of viable cells was markedly decreased, for all cell lines, by AGE-BSA. Concerning lysosomal enzymes, the main cysteine-protease expressed by these cells was cathepsin B, and its concentration was much higher in epithelial than in mesangial cells. Exposure to HG had no effect on the cathepsin B activity, but AGE-BSA caused a marked decrease in LLC-PK1, and increased the enzyme activities in the other cell lines. The levels of nitric oxide (NO) was increased by AGE-BSA in all cell lines, suggesting oxidative stress, and Western blotting has shown that, among the investigated proteins, cathepsin B, mTOR and transcription factor EB (TFEB) were the most significantly affected by exposure to AGE-BSA. As mTOR induces anabolism and inhibits autophagy, and TFEB is a master transcription factor for lysosomal enzymes, it is possible that this pathway plays a role in the inhibition of lysosomal enzymes in proximal tubule cells.


Assuntos
Glucose/farmacologia , Produtos Finais de Glicação Avançada/farmacologia , Rim/citologia , Animais , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cães , Humanos , Lisossomos/enzimologia , Soroalbumina Bovina/metabolismo , Transdução de Sinais/efeitos dos fármacos
13.
Life Sci ; 158: 111-20, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27393492

RESUMO

Renal transplant is the best treatment for patients with chronical kidney disease however acute graft rejection is the major impediment to success in renal transplantation leading to loss of the organ the first year after transplantation. The aim of this study was to identify plasma proteins that may be early biomarkers of acute rejection of renal allograft, developing a diagnostic model that avoids the loss of the transplanted organ. Shotgun proteomics (LC-MS/MS) method was used to analyze a set of thirty-one plasma samples, including 06 from patients with acute graft rejection after transplantation (rejection group/Rej-group) and twenty-five from renal transplant patients with stable renal graft function (control group/Ct-group). As results nineteen proteins were upregulated in the rejection group compared to the control group, and two proteins were downregulated; and three were present exclusively in the rejection group. After analysis, we selected four proteins that were related to the acute phase response and that were strongly associated with each other: they are alpha-1 antitrypsin (A1AT), alpha-2 antiplasmin (A2AP), serum amyloid A (SAA) and apolipoprotein CIII (APOC3). We think that simultaneous monitoring of SAA and APOC3 can provide insights into a broad profile of signaling proteins and is highly valuable for the early detection of a possible acute renal graft rejection. STATEMENT OF SIGNIFICANCE OF THE STUDY: In this study we did plasma shotgun patients with and without acute rejection of renal allograft. In a clinical setting an acute rejection is typically suspected upon an increase in plasma creatinine and renal biopsy. But these methods are late and unspecific; sometimes the rejection process is already advanced when there is an increase in serum creatinine. Therefore, it is necessary to find proteins that can predict the allograft rejection process. In our study were able to identify changes in the concentration of plasma protein belonging to a network of protein interaction processes the acute phase response. We believe, therefore, that development of a routine diagnosis of these proteins can detect early acute rejection of renal allograft process, thus preventing its loss.


Assuntos
Proteínas Sanguíneas/metabolismo , Rejeição de Enxerto/sangue , Transplante de Rim , Cromatografia Líquida , Feminino , Humanos , Masculino , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
14.
J. bras. nefrol ; 38(2): 161-172, tab, graf
Artigo em Português | LILACS | ID: lil-787876

RESUMO

RESUMO Introdução: Priming é um mecanismo de proteção induzida pela exposição anterior de uma célula ou órgão a baixas ou mesmas concentrações de uma substância tóxica. Objetivo: analisar o mecanismo de priming induzido pela exposição a gentamicina em células tubulares proximais humanas e na insuficiência renal aguda (IRA). Métodos: Células tubulares foram expostos a 2 mM de gentamicina durante 24 horas, enquanto ratos Wistar foram expostas a 40 mg/kg durante 3 dias. Depois de uma semana, as células foram expostas à mesma concentração durante 24h e os ratos durante dez dias. Os animais condicionados foram comparados com ratos controle e tratados com gentamicina durante 10 dias. Foram analisados parâmetros bioquímicos, o estresse oxidativo foi analisado por hidroperóxidos e proteínas carboniladas urinárias, enquanto a defesa antioxidante foi estudada pela atividade antioxidante do plasma e imunomarcação e atividade da catalase, superóxido dismutase, heme oxigenase-1 (HO-1) nos rins. Necrose, apoptose, proliferação e expressão da endotelina-1 (ET-1) e HO-1 foram estudadas em células. Resultados: o condicionamento dos animais inibiu o aumento da creatinina, ureia, excreção urinária de sódio e de proteína induzida por gentamicina. Bosentana, antagonista do receptor ET-1, e hemin, indutor de HO-1, potencializaram a inibição. O mecanismo de proteção foi mediado pela indução de enzimas antioxidantes HO-1, catalase e SOD atividade e redução do estresse oxidativo. O condicionamento inibiu a morte celular e induziu a proliferação via produção de ET-1. Conclusão: o mecanismo de condicionamento é persistente e multifactorial, o estímulo da defesa antioxidante poderia mimetizar o processo de condicionamento e impedir a IRA.


ABSTRACT Introduction: Priming is the mechanism of protection induced by a previous exposition of a cell or organ to low or equal concentrations of a toxic substance. Objective: To analyze the mechanism of priming induced by the previous exposition to gentamicin in human proximal tubular cells and nephrotoxic acute renal failure (ARF). Methods: Wistar rats and tubular cells were exposed to gentamicin 2mM during 24h or 40 mg/kg during 3 days and after one rest week were exposed to the same concentration during 24h in cells and additional ten days in rats. The primed animals were compared to control rats receiving vehicle and GENTA animals treated with the gentamicin during the same period. Biochemical parameters were analyzed. The oxidative stress was analyzed by urinary hydroperoxides and carbonylated protein while antioxidant defense was studied by antioxidant activity of the plasma (FRAP), catalase, superoxide dismutase, heme-oxygenase 1 (HO-1) immunostaining and enzymatic activity in kidney. Necrosis, apoptosis, proliferation, endothelin 1 (ET-1) and HO-1 expression were studied in cells. Results: Priming of the animals inhibited the increase in creatinine, urea, sodium excretion and urinary protein induced by gentamicin. Bosentan, ET-1 receptor antagonist, and hemin, HO-1 inducer, potentiate the inhibition. The mechanism of protection was mediated by induction of the antioxidant enzymes HO-1, catalase and SOD activity and oxidative stress reduction. Priming inhibited cell death and induced proliferation through ET-1 production. Conclusion: Priming is a persistent and multifactorial mechanism, the stimulation of the antioxidant defense could mimics partially the priming process and prevent the ARF.


Assuntos
Animais , Masculino , Ratos , Injúria Renal Aguda/induzido quimicamente , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/fisiologia , Antioxidantes/fisiologia , Gentamicinas/administração & dosagem , Células Cultivadas , Ratos Wistar , Estresse Oxidativo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle
15.
J Bras Nefrol ; 37(1): 106-14, 2015.
Artigo em Inglês, Português | MEDLINE | ID: mdl-25923757

RESUMO

Resveratrol (RESV) is a polyphenolic compound found in various plants, including grapes, berries and peanuts, and its processed foods as red wine. RESV possesses a variety of bioactivities, including antioxidant, anti-inflammatory, cardioprotective, antidiabetic, anticancer, chemopreventive, neuroprotective, renal lipotoxicity preventative, and renal protective effects. Numerous studies have demonstrated that polyphenols promote cardiovascular health. Furthermore, RESV can ameliorate several types of renal injury in animal models, including diabetic nephropathy, hyperuricemic, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and endothelial dysfunction. In addition, RESV can prevent the increase in vasoconstrictors, such as angiotensin II (AII) and endothelin-1 (ET-1), as well as intracellular calcium, in mesangial cells. Together, these findings suggest a potential role for RESV as a supplemental therapy for the prevention of renal injury.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Nefropatias/prevenção & controle , Estilbenos/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Humanos , Transporte de Íons/efeitos dos fármacos , Óxido Nítrico , Resveratrol , Estilbenos/farmacologia
16.
J Biol Chem ; 290(17): 11177-87, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25787076

RESUMO

Cachexia occurs in patients with advanced cancers. Despite the adverse clinical impact of cancer-induced muscle wasting, pathways causing cachexia are controversial, and clinically reliable therapies are not available. A trigger of muscle protein loss is the Jak/Stat pathway, and indeed, we found that conditioned medium from C26 colon carcinoma (C26) or Lewis lung carcinoma cells activates Stat3 (p-Stat3) in C2C12 myotubes. We identified two proteolytic pathways that are activated in muscle by p-Stat3; one is activation of caspase-3, and the other is p-Stat3 to myostatin, MAFbx/Atrogin-1, and MuRF-1 via CAAT/enhancer-binding protein δ (C/EBPδ). Using sequential deletions of the caspase-3 promoter and CHIP assays, we determined that Stat3 activation increases caspase-3 expression in C2C12 cells. Caspase-3 expression and proteolytic activity were stimulated by p-Stat3 in muscles of tumor-bearing mice. In mice with cachexia caused by Lewis lung carcinoma or C26 tumors, knock-out of p-Stat3 in muscle or with a small chemical inhibitor of p-Stat3 suppressed muscle mass losses, improved protein synthesis and degradation in muscle, and increased body weight and grip strength. Activation of p-Stat3 stimulates a pathway from C/EBPδ to myostatin and expression of MAFbx/Atrogin-1 and increases the ubiquitin-proteasome system. Indeed, C/EBPδ KO decreases the expression of MAFbx/Atrogin-1 and myostatin, while increasing muscle mass and grip strength. In conclusion, cancer stimulates p-Stat3 in muscle, activating protein loss by stimulating caspase-3, myostatin, and the ubiquitin-proteasome system. These results could lead to novel strategies for preventing cancer-induced muscle wasting.


Assuntos
Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Caspase 3/metabolismo , Neoplasias do Colo/metabolismo , Músculo Esquelético/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fator de Transcrição STAT3/metabolismo , Ubiquitina/metabolismo , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Caquexia/genética , Caquexia/patologia , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Caspase 3/genética , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Camundongos , Camundongos Knockout , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/patologia , Miostatina/genética , Miostatina/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Proteólise , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Fator de Transcrição STAT3/genética , Proteínas com Motivo Tripartido , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
17.
J. bras. nefrol ; 37(1): 106-114, Jan-Mar/2015. graf
Artigo em Inglês | LILACS | ID: lil-744436

RESUMO

Resveratrol (RESV) is a polyphenolic compound found in various plants, including grapes, berries and peanuts, and its processed foods as red wine. RESV possesses a variety of bioactivities, including antioxidant, anti-inflammatory, cardioprotective, antidiabetic, anticancer, chemopreventive, neuroprotective, renal lipotoxicity preventative, and renal protective effects. Numerous studies have demonstrated that polyphenols promote cardiovascular health. Furthermore, RESV can ameliorate several types of renal injury in animal models, including diabetic nephropathy, hyperuricemic, drug-induced injury, aldosterone-induced injury, ischemia-reperfusion injury, sepsis-related injury, and endothelial dysfunction. In addition, RESV can prevent the increase in vasoconstrictors, such as angiotensin II (AII) and endothelin-1 (ET-1), as well as intracellular calcium, in mesangial cells. Together, these findings suggest a potential role for RESV as a supplemental therapy for the prevention of renal injury.


Resveratrol (RESV) é um composto fenólico encontrado em várias plantas, como a uva e amendoim, e seus produtos derivados, como o vinho tinto. RESV possui uma variedade de bioatividades, incluindo antioxidantes, anti-inflamatória, cardioprotetoras, antidiabetes, anticancerígeno, quimiopreventivo, neuroprotetor, lipotoxicidade renal, e efeitos protetores renais. Numerosos estudos demonstraram que os polifenois promovem a saúde cardiovascular e podem reparar vários tipos de lesões renais em modelos animais, incluindo a nefropatia diabética, hiperuricemia, lesão induzida por droga, lesão induzida pela aldosterona, lesão de isquemia-reperfusão, lesões relacionadas com sepsis, e disfunção endotelial. Além disso, RESV pode prevenir o aumento de vasoconstritores, tais como angiotensina II (AII) e endotelina-1 (ET-1), bem como o cálcio intracelular, em células mesangiais. Em conjunto, estes resultados sugerem um importante papel para o RESV como uma terapia complementar na prevenção de lesões renais.


Assuntos
Humanos , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Nefropatias/prevenção & controle , Estilbenos/uso terapêutico , Transporte de Íons/efeitos dos fármacos , Óxido Nítrico , Estilbenos/farmacologia
18.
Cell Transplant ; 24(12): 2657-66, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25695732

RESUMO

The therapeutic potential of mesenchymal stem cells (MSCs) and their conditioned medium (MSC-CM) has been extensively studied. MSCs can repair tissue, reduce local inflammation, and modulate the immune response. Persistent renal tubular interstitial inflammation results in fibrosis and leads to chronic kidney disease (CKD). Unilateral ureteral obstruction (UUO) is a very well-accepted renal fibrosis model. In this study, we evaluated factors influenced by the administration of MSCs or MSC-CM in the UUO model. MSCs extracted from rat bone marrow were cultivated in vitro and characterized by flow cytometry and cellular differentiation. Eight groups of female rats were used in experiments (n = 7, each), including Sham, UUO, UUO + MSC (obstruction + MSC), and UUO + CM (obstruction + MSC-CM) for 7 days of obstruction and Sham, UUO, UUO + MSC, and UUO + CM for 14 days of obstruction. The MSCs or MSC-CM was administered via the abdominal vena cava after total ligation of the left ureter. After 7 or 14 days, rats were euthanized, and serum and obstructed kidney samples were collected. MSCs or MSC-CM decreased the expression of molecules, such as Col1a1, α-SMA, and TNF-α. We also observed reductions in the levels of caspase 3, α-SMA, and PCNA in treated animals by immunohistochemistry. Our results suggest that the intravenous administration of MSCs or MSC-CM improves fibrosis progression and factors involved in apoptosis, inflammation, cell proliferation, and epithelial-mesenchymal transition in Wistar rats subjected to UUO, indicating a potential tool for preventing CKD.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Fibrose/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Insuficiência Renal Crônica/prevenção & controle , Obstrução Ureteral/terapia , Actinas/biossíntese , Animais , Células da Medula Óssea/citologia , Caspase 3/metabolismo , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Colágeno Tipo I/biossíntese , Cadeia alfa 1 do Colágeno Tipo I , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/imunologia , Feminino , Inflamação/imunologia , Inflamação/terapia , Túbulos Renais/patologia , Masculino , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Ratos Wistar , Insuficiência Renal Crônica/patologia , Fator de Necrose Tumoral alfa/biossíntese
19.
Urol Oncol ; 33(9): 389.e1-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25595575

RESUMO

OBJECTIVES: Renal cell carcinoma (RCC) is the most frequent type of cancer among renal neoplasms in adults and responds poorly to radiotherapy and chemotherapy. There is evidence that blockade of the renin-angiotensin system (RAS) might have antineoplastic effects. The aim of this study was to investigate the effects of RAS blockade on RCC in a murine model. METHODS AND MATERIALS: Murine renal cancer cells (Renca) were injected (1 × 10(5)) into the subcapsular space of the left kidney of BALB/c mice (8 wk of age). The animals were divided into 4 groups: a control group (no treatment), angiotensin-receptor blockers group (losartan 100mg/kg/d), angiotensin-converting enzyme inhibitor group (captopril 10mg/kg/d), and angiotensin-receptor blockers +angiotensin-converting enzyme inhibitor group (losartan 100mg/kg/d +captopril 10mg/kg/d). The animals received the drugs by gavage for 21 days after inoculation, beginning 2 days before tumor induction, and were then euthanized. After killing the animals, the kidneys and lungs were removed, weighed, and processed for histopathological and immunohistochemical analyses. Angiogenesis and vascular microvessels were assessed with the antibodies anti-vascular endothelial growth factor and anti-CD34. RESULTS: Angiotensin II-inoculated animals developed renal tumors. Treated animals presented smaller tumors, regardless of the therapeutic regimen, and far fewer lung metastases in both quantity and dimension compared with the controls. The expression of vascular endothelial growth factor and CD34 were significantly decreased in renal tumors of treated animals compared with the controls. CONCLUSIONS: Our findings suggest that blockade of RAS decreases tumor proliferation and metastatic capacity of RCC in this experimental model.


Assuntos
Antagonistas de Receptores de Angiotensina/administração & dosagem , Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Animais , Captopril/administração & dosagem , Modelos Animais de Doenças , Imuno-Histoquímica , Losartan/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica
20.
PLoS One ; 9(9): e107602, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25254489

RESUMO

BACKGROUND: N-acetylcysteine (NAC) or sodium bicarbonate (NaHCO3), singly or combined, inconsistently prevent patients exposed to radiographic contrast media from developing contrast-induced acute kidney injury (CI-AKI). OBJECTIVE: We asked whether intravenous isotonic saline and either NaHCO3 in 5% dextrose or else a high dose of NAC in 5% dextrose prevent CI-AKI in outpatients exposed to high-osmolal iodinated contrast medium more than does saline alone. METHODS: This completed prospective, parallel, superiority, open-label, controlled, computer-randomized, single-center, Brazilian trial (NCT01612013) hydrated 500 adult outpatients (214 at high risk of developing CI-AKI) exposed to ioxitalamate during elective coronary angiography and ventriculography. From 1 hour before through 6 hours after exposure, 126 patients (group 1) received a high dose of NAC and saline, 125 (group 2) received NaHCO3 and saline, 124 (group 3) received both treatments, and 125 (group 4) received only saline. RESULTS: Groups were similar with respect to age, gender, weight, pre-existing renal dysfunction, hypertension, medication, and baseline serum creatinine and serum cystatin C, but diabetes mellitus was significantly less prevalent in group 1. CI-AKI incidence 72 hours after exposure to contrast medium was 51.4% (257/500), measured as serum creatinine > (baseline+0.3 mg/dL) and/or serum cystatin C > (1.1 · baseline), and 7.6% (38/500), measured as both serum creatinine and serum cystatin C > (baseline+0.3 mg/dL) or > (1.25 · baseline). CI-AKI incidence measured less sensitively was similar among groups. Measured more sensitively, incidence in group 1 was significantly (p<0.05) lower than in groups 2 and 3 but not group 4; adjustment for confounding by infused volume equalized incidence in groups 1 and 3. CONCLUSION: We found no evidence that intravenous isotonic saline and either NaHCO3 or else a high dose of NAC prevent CI-AKI in outpatients exposed to high osmolal iodinated contrast medium more than does saline alone. TRIAL REGISTRATION: ClinicalTrials.gov NCT01612013.


Assuntos
Acetilcisteína/administração & dosagem , Acetilcisteína/farmacologia , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Meios de Contraste/efeitos adversos , Bicarbonato de Sódio/administração & dosagem , Bicarbonato de Sódio/farmacologia , Administração Intravenosa , Meios de Contraste/química , Angiografia Coronária/efeitos adversos , Feminino , Humanos , Ácido Iotalâmico/efeitos adversos , Ácido Iotalâmico/análogos & derivados , Ácido Iotalâmico/química , Masculino , Pessoa de Meia-Idade , Concentração Osmolar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA