Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1280826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077331

RESUMO

To accelerate the development of Advanced Therapy Medicinal Products (ATMPs) for patients suffering from life-threatening cancer with limited therapeutic options, regulatory approaches need to be constantly reviewed, evaluated and adjusted, as necessary. This includes utilizing science and risk-based approaches to mitigate and balance potential risks associated with early clinical research and a more flexible manufacturing paradigm. In this paper, T2EVOLVE an Innovative Medicine Initiative (IMI) consortium explores opportunities to expedite the development of CAR and TCR engineered T cell therapies in the EU by leveraging tools within the existing EU regulatory framework to facilitate an iterative and adaptive learning approach across different product versions with similar design elements or based on the same platform technology. As understanding of the linkage between product quality attributes, manufacturing processes, clinical efficacy and safety evolves through development and post licensure, opportunities are emerging to streamline regulatory submissions, optimize clinical studies and extrapolate data across product versions reducing the need to perform duplicative studies. It is worth noting that this paper is focusing on CAR- and TCR-engineered T cell therapies but the concepts may be applied more broadly to engineered cell therapy products (e.g., CAR NK cell therapy products).


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia Adotiva , Humanos , Imunoterapia Adotiva/efeitos adversos , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T
2.
iScience ; 26(10): 107819, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736044

RESUMO

Signal peptide peptidase-like 2a and b (SPPL2a/b) are aspartyl intramembrane proteases and cleave tail-anchored proteins as well as N-terminal fragments (NTFs) derived from type II-oriented transmembrane proteins. How these proteases recruit substrates and cleavage is regulated, is still incompletely understood. We found that SPPL2a/b localize to detergent-resistant membrane (DRM) domains with the characteristics of tetraspanin-enriched microdomains (TEMs). Based on this, association with several tetraspanins was evaluated. We demonstrate that not only SPPL2a/b but also their substrates tumor necrosis factor (TNF) and CD74 associate with tetraspanins like CD9, CD81, and CD82 and/or TEMs and analyze the stability of these complexes in different detergents. CD9 and CD81 deficiency has protease- and substrate-selective effects on SPPL2a/b function. Our findings suggest that reciprocal interactions with tetraspanins may assist protease-substrate encounters of SPPL2a/b within the membrane. Beyond SPP/SPPL proteases, this supports previous concepts that tetraspanins facilitate membrane-embedded proteolytic processes.

3.
Sci Rep ; 10(1): 21612, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303781

RESUMO

The cytokine interleukin-6 (IL-6) fulfills its pleiotropic functions via different modes of signaling. Regenerative and anti-inflammatory activities are mediated via classic signaling, in which IL-6 binds to the membrane-bound IL-6 receptor (IL-6R). For IL-6 trans-signaling, which accounts for the pro-inflammatory properties of the cytokine, IL-6 activates its target cells via soluble forms of the IL-6R (sIL-6R). We have previously shown that the majority of sIL-6R in human serum originates from proteolytic cleavage and mapped the cleavage site of the IL-6R. The cleavage occurs between Pro-355 and Val-356, which is the same cleavage site that the metalloprotease ADAM17 uses in vitro. However, sIL-6R serum levels are unchanged in hypomorphic ADAM17ex/ex mice, making the involvement of ADAM17 questionable. In order to identify other proteases that could be relevant for sIL-6R generation in vivo, we perform a screening approach based on the known cleavage site. We identify several candidate proteases and characterize the cysteine protease cathepsin S (CTSS) in detail. We show that CTSS is able to cleave the IL-6R in vitro and that the released sIL-6R is biologically active and can induce IL-6 trans-signaling. However, CTSS does not use the Pro-355/Val-356 cleavage site, and sIL-6R serum levels are not altered in Ctss-/- mice. In conclusion, we identify a novel protease of the IL-6R that can induce IL-6 trans-signaling, but does not contribute to steady-state sIL-6R serum levels.


Assuntos
Catepsinas/fisiologia , Interleucina-6/metabolismo , Receptores de Interleucina-6/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos , Hidrólise , Técnicas In Vitro , Camundongos
4.
Toxicol In Vitro ; 59: 238-245, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30954653

RESUMO

The mutagen and probable human carcinogen 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) is metabolized in the colon to 9-hydroxyl-2,7-dimethyl-7,9,10,11-tetrahydropyrimido[2',1':2,3]imidazo[4,5-f]quinoxaline (MeIQx-M1) by conjugation with microbially generated acrolein. However, whether this microbiota-controlled process alters systemic exposure and hepatotoxicity of MeIQx remains unclear. The physiological relevance of this microbial transformation on the systemic exposure of MeIQx was investigated using an in vitro-in vivo extrapolation approach. To address whether microbial transformation influences intestinal transport of MeIQx, the intestinal uptake of MeIQx and its metabolite MeIQx-M1 was quantified using Ussing chambers mounted with different intestinal segments from male Fischer 344 rats. Up to 0.4% of both MeIQx and MeIQx-M1 were transported from the mucosal side to the serosal side of intestinal tissue within 90 min, suggesting that the intestinal uptake of both compounds is similar. With the uptake rates of both compounds, physiologically based pharmacokinetic (PBPK) modeling of the fate of MeIQx in the human body including microbial transformation of MeIQx was performed. Results indicate for the first time that high levels of microbe-derived acrolein would be required to significantly reduce systemic exposure of MeIQx in humans. Finally, neither MeIQx nor MeIQx-M1 were cytotoxic towards human liver HepaRG cells at dietary or higher concentrations of MeIQx. In summary, these findings suggest that gut microbial transformation of heterocyclic amines has the potential to influence systemic human exposure to some extent, but may require significant gut microbial production of acrolein and that further investigations are needed to understand physiological levels of acrolein and competing biotransformation pathways.


Assuntos
Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mutagênicos/farmacocinética , Quinoxalinas/farmacocinética , Animais , Biotransformação , Linhagem Celular , Humanos , Fígado/citologia , Masculino , Ratos , Ratos Endogâmicos F344
5.
Nat Immunol ; 19(9): 973-985, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127434

RESUMO

Human inborn errors of IFN-γ immunity underlie mycobacterial diseases. We describe patients with Mycobacterium bovis (BCG) disease who are homozygous for loss-of-function mutations of SPPL2A. This gene encodes a transmembrane protease that degrades the N-terminal fragment (NTF) of CD74 (HLA invariant chain) in antigen-presenting cells. The CD74 NTF therefore accumulates in the HLA class II+ myeloid and lymphoid cells of SPPL2a-deficient patients. This toxic fragment selectively depletes IL-12- and IL-23-producing CD1c+ conventional dendritic cells (cDC2s) and their circulating progenitors. Moreover, SPPL2a-deficient memory TH1* cells selectively fail to produce IFN-γ when stimulated with mycobacterial antigens in vitro. Finally, Sppl2a-/- mice lack cDC2s, have CD4+ T cells that produce small amounts of IFN-γ after BCG infection, and are highly susceptible to infection with BCG or Mycobacterium tuberculosis. These findings suggest that inherited SPPL2a deficiency in humans underlies mycobacterial disease by decreasing the numbers of cDC2s and impairing IFN-γ production by mycobacterium-specific memory TH1* cells.


Assuntos
Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Células Dendríticas/imunologia , Proteínas de Membrana/metabolismo , Infecções por Mycobacterium/imunologia , Mycobacterium bovis/fisiologia , Mycobacterium tuberculosis/fisiologia , Células Th1/imunologia , Tuberculose/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Células Cultivadas , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunidade , Memória Imunológica , Lactente , Interferon gama/metabolismo , Linfadenopatia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Infecções por Mycobacterium/genética , Vacinação
6.
Physiol Rep ; 6(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29333720

RESUMO

Glucose-induced electrogenic ion transport is higher in the porcine ileum compared with the jejunum despite equal apical abundance of SGLT1. The objective of this study was a detailed determination of SGLT1 and GLUT2 expressions at mRNA and protein levels along the porcine small intestinal axis. Phosphorylation of SGLT1 at serine 418 was assessed as a potential modulator of activity. Porcine intestinal tissues taken along the intestinal axis 1 h or 3 h after feeding were analyzed for relative mRNA (RT-PCR) and protein levels (immunoblot) of SGLT1, pSGLT1, GLUT2, (p)AMPK, ß2 -receptor, and PKA substrates. Functional studies on electrogenic glucose transport were done (Ussing chambers: short circuit currents (Isc )). Additionally, effects of epinephrine (Epi) administration on segment-specific glucose transport and pSGLT1 content were examined. SGLT1 and GLUT2 expression was similar throughout the small intestines but lower in the duodenum and distal ileum. pSGLT1 abundance was significantly lower in the ileum compared with the jejunum associated with significantly higher glucose-induced Isc . SGLT1 phosphorylation was not inducible by Epi. Epi treatment decreased glucose-induced Isc and glucose flux rates in the jejunum but increased basal Isc in the ileum. Epi-induced PKA activation was detectable in jejunal tissue. These results may indicate that SGLT1 phosphorylation at Ser418 represents a structural change to compensate for certain conditions that may decrease glucose transport (unfavorable driving forces/changed apical membrane potential) rather than being the cause for the overall differences in glucose transport characteristics between the jejunum and ileum.


Assuntos
Glucose/metabolismo , Intestino Delgado/metabolismo , Transportador 1 de Glucose-Sódio/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Epinefrina/farmacologia , Feminino , Transportador de Glucose Tipo 2/metabolismo , Absorção Intestinal , Intestino Delgado/efeitos dos fármacos , Fosforilação , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Transportador 1 de Glucose-Sódio/genética , Suínos
7.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2169-2182, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28624439

RESUMO

Signal peptide peptidase (SPP) and the four homologous SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 are GxGD-type intramembrane-cleaving proteases (I-CLIPs). In addition to divergent subcellular localisations, distinct differences in the mechanistic properties and substrate requirements of individual family members have been unravelled. SPP/SPPL proteases employ a catalytic mechanism related to that of the γ-secretase complex. Nevertheless, differential targeting of SPP/SPPL proteases and γ-secretase by inhibitors has been demonstrated. Furthermore, also within the SPP/SPPL family significant differences in the sensitivity to currently available inhibitory compounds have been reported. Though far from complete, our knowledge on pathophysiological functions of SPP/SPPL proteases, in particular based on studies in mice, has been significantly increased over the last years. Based on this, inhibition of distinct SPP/SPPL proteases has been proposed as a novel therapeutic concept e.g. for the treatment of autoimmunity and viral or protozoal infections, as we will discuss in this review. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Proteínas de Membrana/genética , Peptídeos/genética , Proteólise , Sequência de Aminoácidos/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/genética , Humanos , Proteínas de Membrana/antagonistas & inibidores , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Especificidade por Substrato
8.
Oncotarget ; 8(27): 43635-43652, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28504966

RESUMO

The Transmembrane protein 192 (TMEM192) is a lysosomal/late endosomal protein initially discovered by organellar proteomics. TMEM192 exhibits four transmembrane segments with cytosolic N- and C-termini and forms homodimers. Devoid of significant homologies, the molecular function of TMEM192 is currently unknown. Upon TMEM192 knockdown in hepatoma cells, a dysregulation of autophagy and increased apoptosis were reported. Here, we aimed to define the physiological role of TMEM192 by analysing consequences of TMEM192 ablation in mice. Therefore, we compared the biochemical properties of murine TMEM192 to those of the human orthologue. We reveal lysosomal residence of murine TMEM192 and demonstrate ubiquitous tissue expression. In brain, TMEM192 expression was pronounced in the hippocampus but also present in the cortex and cerebellum, as analysed based on a lacZ reporter allele. Murine TMEM192 undergoes proteolytic processing in a tissue-specific manner. Thereby, a 17 kDa fragment is generated which was detected in most murine tissues except liver. TMEM192 processing occurs after lysosomal targeting by pH-dependent lysosomal proteases. TMEM192-/- murine embryonic fibroblasts (MEFs) exhibited a regular morphology of endo-/lysosomes and were capable of performing autophagy and lysosomal exocytosis. Histopathological, ultrastructural and biochemical analyses of all major tissues of TMEM192-/- mice demonstrated normal lysosomal functions without apparent lysosomal storage. Furthermore, the abundance of the major immune cells was comparable in TMEM192-/- and wild type mice. Based on this, we conclude that under basal conditions in vivo the loss of TMEM192 can be efficiently compensated by alternative pathways. Further studies will be required to decipher its molecular function.


Assuntos
Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Fibroblastos , Expressão Gênica , Técnicas de Inativação de Genes , Glicosilação , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteólise , Baço/metabolismo , Baço/patologia , Ubiquitinação
9.
Ageing Res Rev ; 32: 51-64, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27143694

RESUMO

Regulated intramembrane proteolysis is of pivotal importance in a diverse set of developmental and physiological processes. Altered intramembrane substrate turnover may be associated with neurodegeneration, cancer and impaired immune function. In this review we will focus on the intramembrane proteases which have been localized in the lysosomal membrane. Members of the γ-secretase complex and γ-secretase activity are found in the lysosomal membrane and are discussed to contribute to intracellular amyloid ß production. Mutant or deficient γ-secretase may cause disturbed lysosomal function. The signal peptide peptidase-like (SPPL) protease 2a is a lysosomal membrane component and cleaves CD74, the invariant chain of the MHC II complex, as well as FasL, TNF, ITM2B and TMEM106, type II transmembrane proteins involved in the regulation of immunity and neurodegeneration. Therefore, it can be concluded, that not only proteolysis within the lysosomal lumen but also within lysosomal membranes regulates important cellular functions and contributes essentially to proteostasis of membrane proteins what may become increasingly compromised in the aged individual.


Assuntos
Envelhecimento/fisiologia , Membrana Celular/fisiologia , Lisossomos , Proteínas de Membrana/fisiologia , Degeneração Neural/metabolismo , Proteólise , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo
10.
Biochim Biophys Acta ; 1863(6 Pt A): 1269-81, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27033518

RESUMO

The invariant chain (CD74) is well known for its essential role in antigen presentation by mediating assembly and subcellular trafficking of the MHCII complex. Beyond this, CD74 has also been implicated in a number of processes independent of MHCII. These include the regulation of endosomal trafficking, cell migration and cellular signalling as surface receptor of the pro-inflammatory cytokine macrophage migration inhibitory factor (MIF). In several forms of cancer, CD74 is up-regulated and associated with enhanced proliferation and metastatic potential. In this review, an overview of the diverse biological functions of the CD74 protein is provided with a particular focus on how these may be regulated. In particular, proteolysis of CD74 will be discussed as a central mechanism to control the actions of this important protein at different levels.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Chaperonas Moleculares/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Modelos Imunológicos , Chaperonas Moleculares/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Neoplasias/patologia , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Regulação para Cima
11.
Biochem J ; 473(10): 1405-22, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26987812

RESUMO

The presenilin homologue signal peptide peptidase-like 2a (SPPL2a) is an intramembrane protease of lysosomes/late endosomes which cleaves type II transmembrane proteins. We recently identified CD74, the invariant chain of the MHCII complex, as the first in vivo validated substrate of this protease. In endosomal compartments, CD74 undergoes sequential proteolysis leading to the generation of a membrane-bound N-terminal fragment (NTF) that requires cleavage by SPPL2a for its turnover. In SPPL2a(-/-) mice, this fragment accumulates in B-cells and significantly disturbs their maturation and functionality. To date, the substrate requirements of the protease SPPL2a have not been investigated. In the present study, we systematically analysed the molecular determinants of CD74 with regard to the intramembrane cleavage by SPPL2a. Using domain-exchange experiments, we demonstrate that the intracellular domain (ICD) of CD74 can be substituted without affecting cleavability by SPPL2a. Based on IP-MS analysis of the cleavage product, we report identification of the primary SPPL2a cleavage site between Y52 and F53 within the CD74 transmembrane segment. Furthermore, systematic alanine-scanning mutagenesis of the transmembrane and membrane-proximal parts of the CD74 NTF has been performed. We show that none of the analysed determinants within the CD74 NTF including the residues flanking the primary cleavage site are absolutely essential for SPPL2a cleavage. Importantly, we found that alanine substitution of helix-destabilizing glycines within the transmembrane segment and distinct residues within the luminal membrane-proximal segment led to a reduced efficiency of SPPL2a-mediated processing. Therefore we propose that elements within the transmembrane segment and the luminal juxtamembrane domain facilitate intramembrane proteolysis of CD74 by SPPL2a.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Membrana/metabolismo , Animais , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Diferenciação de Linfócitos B/genética , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Técnica Indireta de Fluorescência para Anticorpo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteólise
12.
J Immunol ; 195(4): 1548-63, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26157172

RESUMO

The invariant chain (CD74), a chaperone in MHC class II-mediated Ag presentation, is sequentially processed by different endosomal proteases. We reported recently that clearance of the final membrane-bound N-terminal fragment (NTF) of CD74 is mediated by the intramembrane protease signal peptide peptidase-like (SPPL)2a, a process critical for B cell development. In mice, SPPL2a deficiency provokes the accumulation of this NTF in endocytic vesicles, which leads to a B cell maturation arrest at the transitional 1 stage. To define the underlying mechanism, we analyzed the impact of SPPL2a deficiency on signaling pathways involved in B cell homeostasis. We demonstrate that tonic as well as BCR-induced activation of the PI3K/Akt pathway is massively compromised in SPPL2a(-/-) B cells and identify this as major cause of the B cell maturation defect in these mice. Altered BCR trafficking induces a reduction of surface IgM in SPPL2a-deficient B cells, leading to a diminished signal transmission via the BCR and the tyrosine kinase Syk. We provide evidence that in SPPL2a(-/-) mice impaired BCR signaling is to a great extent provoked by the accumulating CD74 NTF, which can interact with the BCR and Syk, and that impaired PI3K/Akt signaling and reduced surface IgM are not directly linked processes. In line with disturbances in PI3K/Akt signaling, SPPL2a(-/-) B cells show a dysregulation of the transcription factor FOXO1, causing elevated transcription of proapoptotic genes. We conclude that SPPL2a-mediated processing of CD74 NTF is indispensable to maintain appropriate levels of tonic BCR signaling to promote B cell maturation.


Assuntos
Antígenos de Diferenciação de Linfócitos B/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Linfócitos B/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais , Animais , Antígenos de Diferenciação de Linfócitos B/química , Apoptose/genética , Ácido Aspártico Endopeptidases/deficiência , Ácido Aspártico Endopeptidases/genética , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular , Membrana Celular/metabolismo , Endocitose/genética , Endocitose/imunologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Imunoglobulina M/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ativação Linfocitária , Sistema de Sinalização das MAP Quinases , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinase Syk
13.
Traffic ; 16(8): 871-92, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25824657

RESUMO

During regulated intramembrane proteolysis (RIP) a membrane-spanning substrate protein is cleaved by an ectodomain sheddase and an intramembrane cleaving protease. A cytoplasmic intracellular domain (ICD) is liberated, which can migrate to the nucleus thereby influencing transcriptional regulation. Signal peptide peptidase-like (SPPL) 2a and 2b have been implicated in RIP of type II transmembrane proteins. Even though SPPL2a might represent a potential pharmacological target for treatment of B-cell-mediated autoimmunity, no specific and potent inhibitors for this enzyme are currently available. We report here on the first quantitative cell-based assay for measurement of SPPL2a/b activity. Demonstrating the failure of standard Gal4/VP16 reporter assays for SPPL2a/b analysis, we have devised a novel system employing ß-galactosidase (ßGal) complementation. This is based on detecting nuclear translocation of the proteolytically released substrate ICDs, which results in specific restoration of ßGal activity. Utilizing this potentially high-throughput compatible new setup, we demonstrate nuclear translocation of the ICDs from integral membrane protein 2B (ITM2B), tumor necrosis factor (TNF) and CD74 and identify secreted frizzled-related protein 2 (SFRP2) as potential transcriptional downstream target of the CD74 ICD. We show that the presented assay is easily adaptable to other intramembrane proteases and therefore represents a valuable tool for the functional analysis and development of new inhibitors of this class of enzymes.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Núcleo Celular/metabolismo , Sinais de Localização Nuclear , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Ácido Aspártico Endopeptidases/química , Células HEK293 , Células HeLa , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteólise , Fator de Necrose Tumoral alfa/metabolismo
14.
Toxicol Lett ; 234(2): 92-8, 2015 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-25707896

RESUMO

Previous studies have shown that in the rat, the colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) is only absorbed to a limited extent in the small intestines and that a major fraction of unmetabolised PhIP reaches the colon. Moreover, PhIP is extensively metabolised when incubated with human stool samples to a major derivative, 7-hydroxy-5-methyl-3-phenyl-6,7,8,9-tetrahydropyrido [3',2':4,5]imidazo[1,2-a]pyrimidin-5-ium chloride (PhIP-M1). In the present study, the uptake and transport of PhIP-M1 in Ussing chamber experiments, its cytotoxicity in the different segments of the Fischer 344 rat gut and its transforming potential in the BALB/c 3T3 cell transformation assay were analysed. At the most, 10-20% of the PhIP-M1 amount added to the mucosal compartment of the Ussing chambers per segment were absorbed within 90min. Therefore, the amount of PhIP-M1 detected in the tissues as well as in the serosal compartment of the Ussing chambers was extremely low. Moreover, human-relevant concentrations of PhIP-M1 were not cytotoxic and did not induce the malignant transformation of BALB/c 3T3 cells. In conclusion, even if one would assume that 100% of the daily amount of PhIP ingested by a human being is converted into PhIP-M1 in the colon, this concentration most probably would not lead to cytotoxicity and/or carcinogenicity in the colorectal mucosa.


Assuntos
Transformação Celular Neoplásica/induzido quimicamente , Imidazóis/metabolismo , Imidazóis/toxicidade , Absorção Intestinal , Mucosa Intestinal/metabolismo , Pirimidinas/metabolismo , Pirimidinas/toxicidade , Animais , Células 3T3 BALB , Relação Dose-Resposta a Droga , Cinética , Masculino , Camundongos , Ratos Endogâmicos F344 , Medição de Risco
15.
EMBO J ; 33(24): 2890-905, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25354954

RESUMO

Protein N-glycosylation is involved in a variety of physiological and pathophysiological processes such as autoimmunity, tumour progression and metastasis. Signal peptide peptidase-like 3 (SPPL3) is an intramembrane-cleaving aspartyl protease of the GxGD type. Its physiological function, however, has remained enigmatic, since presently no physiological substrates have been identified. We demonstrate that SPPL3 alters the pattern of cellular N-glycosylation by triggering the proteolytic release of active site-containing ectodomains of glycosidases and glycosyltransferases such as N-acetylglucosaminyltransferase V, ß-1,3 N-acetylglucosaminyltransferase 1 and ß-1,4 galactosyltransferase 1. Cleavage of these enzymes leads to a reduction in their cellular activity. In line with that, reduced expression of SPPL3 results in a hyperglycosylation phenotype, whereas elevated SPPL3 expression causes hypoglycosylation. Thus, SPPL3 plays a central role in an evolutionary highly conserved post-translational process in eukaryotes.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Regulação da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Glicosilação , Humanos , Processamento de Proteína Pós-Traducional
16.
Nat Commun ; 5: 4699, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25144390

RESUMO

Endolysosomal organelles play a key role in trafficking, breakdown and receptor-mediated recycling of different macromolecules such as low-density lipoprotein (LDL)-cholesterol, epithelial growth factor (EGF) or transferrin. Here we examine the role of two-pore channel (TPC) 2, an endolysosomal cation channel, in these processes. Embryonic mouse fibroblasts and hepatocytes lacking TPC2 display a profound impairment of LDL-cholesterol and EGF/EGF-receptor trafficking. Mechanistically, both defects can be attributed to a dysfunction of the endolysosomal degradation pathway most likely on the level of late endosome to lysosome fusion. Importantly, endolysosomal acidification or lysosomal enzyme function are normal in TPC2-deficient cells. TPC2-deficient mice are highly susceptible to hepatic cholesterol overload and liver damage consistent with non-alcoholic fatty liver hepatitis. These findings indicate reduced metabolic reserve of hepatic cholesterol handling. Our results suggest that TPC2 plays a crucial role in trafficking in the endolysosomal degradation pathway and, thus, is potentially involved in the homoeostatic control of many macromolecules and cell metabolites.


Assuntos
Canais de Cálcio/genética , Fígado Gorduroso/genética , Fígado Gorduroso/fisiopatologia , Animais , Transporte Biológico/genética , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Colesterol/metabolismo , LDL-Colesterol/metabolismo , Endossomos/metabolismo , Receptores ErbB/metabolismo , Fígado Gorduroso/etiologia , Predisposição Genética para Doença , Lisossomos/metabolismo , Masculino , Camundongos Knockout
17.
J Am Soc Mass Spectrom ; 25(5): 852-60, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24584889

RESUMO

The interaction of imidazolium-based ionic liquids with α- and ß-cyclodextrins was investigated by electrospray ionization mass spectrometry with variable collision induced dissociation energy and quantum chemical gas-phase calculations. The center-of-mass energy at which 50% of a precursor ion decomposes (Ecm,1/2) was determined for the isolated [cyclodextrin + cation](+) or [cyclodextrin + anion](-) adduct ions of imidazolium-based ionic liquids with different alkyl chain lengths combined with a large set of anions, such as chloride, bromide, bis(trifluoromethylsulfonyl)imide, tetrafluoroborate, hexafluorophosphate, trifluoromethanesulfonate, methanesulfonate, dicyanamide, and hydrogensulfate. Moreover, both symmetric and asymmetric imidazolium cationic cores were evaluated. The relative interaction energies in the adduct ions were interpreted in terms of the influence of cation/anion structures and their inherent properties, such as hydrophobicity and hydrogen bond accepting ability, in the complexation process with the cyclodextrins. The trends observed in the mass spectral data together with quantum-chemical calculations suggest that in the gas phase, cations and anions will preferentially interact with the lower or upper rim of the cyclodextrin, respectively, as opposed to what has been reported in condensed phase where the formation of an inclusion complex between ionic liquid and cyclodextrin is assumed.

18.
Inflamm Bowel Dis ; 20(3): 431-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24487272

RESUMO

BACKGROUND: Infection may trigger clinically overt mucosal inflammation in patients with predisposition for inflammatory bowel disease. However, the impact of particular enteropathogenic microorganisms is ill-defined. In this study, the influence of murine norovirus (MNV) infection on clinical, histopathological, and immunological features of mucosal inflammation in the IL10-deficient (Il10) mouse model of inflammatory bowel disease was examined. METHODS: C57BL/6J and C3H/HeJBir wild-type and Il10 mice kept under special pathogen-free conditions and devoid of clinical and histopathological signs of mucosal inflammation were monitored after MNV infection for structural and functional intestinal barrier changes by in situ MNV reverse transcription PCR, transgene reporter gene technology, histology, flux measurements, quantitative real-time PCR, immunohistology, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. In addition, the influence of the enteric microbiota was analyzed in MNV-infected germfree Il10 mice. RESULTS: Although MNV-infected wild-type mice remained asymptomatic, mucosal inflammation was noted in previously healthy Il10 mice 2 to 4 weeks after infection. MNV-induced changes in Il10 mice included increased paracellular permeability indicated by increased mucosal mannitol flux, reduced gene expression of tight junction molecules, and an enhanced rate of epithelial apoptosis. MNV-induced reduction of tight junction protein expression and inflammatory lesions were absent in germfree Il10 mice, whereas epithelial apoptosis was still observed. CONCLUSIONS: Despite its subclinical course in wild-type animals, MNV causes epithelial barrier disruption in Il10 animals representing a potent colitogenic stimulus that largely depends on the presence of the enteric microbiota. MNV might thus trigger overt clinical disease in individuals with a nonsymptomatic predisposition for inflammatory bowel disease by impairment of the intestinal mucosa.


Assuntos
Infecções por Caliciviridae/imunologia , Inflamação/imunologia , Interleucina-10/fisiologia , Microbiota , Mucosite/imunologia , Norovirus/patogenicidade , Animais , Apoptose , Western Blotting , Infecções por Caliciviridae/microbiologia , Infecções por Caliciviridae/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosite/microbiologia , Mucosite/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
J Immunol ; 191(6): 2871-8, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23945142

RESUMO

Mast cell (MC) activation through the high-affinity IgE receptor FcεRI leads to the release of mediators involved in immediate-type allergic reactions. Although Abs against the tetraspanins CD63 and CD81 inhibit FcεRI-induced MC degranulation, the intrinsic role of these molecules in FcεRI-induced MC activation is unknown. In MCs, CD63 is expressed at the cell surface and in lysosomes (particularly secretory lysosomes that contain allergic mediators). In this study, we investigated the role of CD63 in MC using a CD63 knockout mouse model. CD63-deficiency did not affect in vivo MC numbers and tissue distribution. Bone marrow-derived MC developed normally in the absence of CD63 protein. However, CD63-deficient bone marrow-derived MC showed a significant decrease in FcεRI-mediated degranulation, but not PMA/ionomycin-induced degranulation, as shown by ß-hexosaminidase release assays. The secretion of TNF-α, which is both released from granules and synthesized de novo upon MC activation, was also decreased. IL-6 secretion and production of the lipid mediator leukotriene C4 were unaffected. There were no ultrastructural differences in granule content and morphology, late endosomal/lysosomal marker expression, FcεRI-induced global tyrosine phosphorylation, and Akt phosphorylation. Finally, local reconstitution in genetically MC-deficient Kit(w/w-v) mice was unaffected by the absence of CD63. However, the sites reconstituted with CD63-deficient MC developed significantly attenuated cutaneous anaphylactic reactions. These findings demonstrate that the absence of CD63 results in a significant decrease of MC degranulation, which translates into a reduction of acute allergic reactions in vivo, thus identifying CD63 as an important component of allergic inflammation.


Assuntos
Anafilaxia/imunologia , Degranulação Celular/imunologia , Mastócitos/imunologia , Tetraspanina 30/imunologia , Transferência Adotiva , Anafilaxia/metabolismo , Animais , Citocinas/biossíntese , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Immunoblotting , Imunoglobulina E/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Tetraspanina 30/metabolismo
20.
Arch Toxicol ; 87(5): 895-904, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23306951

RESUMO

Epidemiological studies show that a positive correlation exists between the consumption of strongly heated meat and fish and the development of colorectal tumours. In this context, it has been postulated that the uptake of toxic substances formed during meat and fish processing such as heterocyclic aromatic amines (HCAs) may be causally related to colon carcinogenesis. In a previous study, we have shown that 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), the most abundantly formed HCA in the above-mentioned food items, is mainly absorbed in the small intestine (i.e. proximal jejunum) of the rat. In the present study, we analysed whether PhIP can actively be secreted by enterocytes in the rat proximal jejunum and distal colon. Unidirectional PhIP flux rates from the mucosal-to-the serosal compartment (J ms ) and in the opposite direction (J sm ) were examined in Ussing chambers with (14)C-PhIP as radiotracer and in the absence of electrochemical gradients. Under these experimental conditions, significant negative net flux rates (J net  = J ms  - J sm ) can only be explained by an active secretion of PhIP into the luminal compartment, and such an effect was observed in the rat distal colon, but not in the proximal jejunum. Moreover, the data obtained suggest that the breast cancer resistance protein, the multidrug resistance protein 4 and P-glycoprotein are not involved in the active secretion of PhIP in the rat distal colon. The potential role of PhIP transport in colon carcinogenesis is discussed.


Assuntos
Adenocarcinoma/metabolismo , Carcinógenos/farmacocinética , Colo/metabolismo , Neoplasias do Colo/metabolismo , Enterócitos/metabolismo , Imidazóis/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/patologia , Animais , Transporte Biológico , Carcinógenos/toxicidade , Colo/efeitos dos fármacos , Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Enterócitos/efeitos dos fármacos , Enterócitos/patologia , Imidazóis/toxicidade , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/patologia , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos , Ratos Endogâmicos F344
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA