Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 28: 100509, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38045640

RESUMO

Radiotherapy in expiration breath-hold (EBH) has the potential to reduce treatment volumes of abdominal targets compared to an internal target volume concept in free-breathing. The reproducibility of EBH and required safety margins were investigated to quantify this volumetric benefit. Pre- and post-treatment diaphragm position difference and the positioning variability were determined on computed tomography. Systematic and random errors for EBH position reproducibility and positioning variability were calculated, resulting in margins of 7 to 12 mm depending on the prescription isodose and fractionation. A reduced volume was shown for EBH for lesions with superior-inferior breathing motion above 4 to 8 mm.

3.
Phys Med Biol ; 65(6): 065005, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32028275

RESUMO

In magnetic resonance guided radiotherapy (MRgRT) radiation dose measurements needs to be performed in the presence of a magnetic field. In this study, the influence of magnetic fields on the readings of a Fricke detector, a chemical dosimeter, have been investigated in 6 MV photon beams. This type of detector has been chosen, as the Federal Office of Metrology (METAS, Switzerland) has great experience with Fricke dosimetry and since it is not expected that this detector is greatly affected by the presence of a magnetic field. Magnetic fields with field strengths between 0 T and 1.42 T were applied during the detector irradiation. In a 5 × 10 cm2 irradiation field, the Fricke readings are affected less than 0.9% by the applied magnetic fields. Taking the altered dose distribution due to the magnetic field ([Formula: see text]) into account, the magnetic field correction factors ([Formula: see text]) for the Fricke detector at 0.35 T and 1.42 T are determined to be 0.9948 and 0.9980, respectively. These small corrections hardly exceed the measurement uncertainties. Hence, we could proof that the Fricke detector is not significantly influenced by the presence of a magnetic field. The Fricke detector was also tested for the feasibility of measuring output factors in the presence of magnetic fields. For irradiation field sizes larger than the detector (>2 × 2 cm2), comparable results were obtained as for other detectors. The output factors decrease when a magnetic field is applied. This effect is more pronounce for larger magnetic field strengths and smaller irradiation fields due to shifts of the depth dose curves and asymmetry of lateral dose profiles.


Assuntos
Campos Magnéticos , Fótons/uso terapêutico , Radiometria/métodos , Aceleradores de Partículas , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA