Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Front Pharmacol ; 14: 1306584, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027031

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation and joint damage. The signaling lymphocytic activation molecule (SLAMF) family of receptors are expressed on various hematopoietic and non-hematopoietic cells and can regulate both immune cell activation and cytokine production. Altered expression of certain SLAMF receptors contributes to aberrant immune responses in RA. In RA, SLAMF1 is upregulated on T cells and may promote inflammation by participating in immune cell-mediated responses. SLAMF2 and SLAMF4 are involved in regulating monocyte tumor necrosis factor production and promoting inflammation. SLAMF7 activates multiple inflammatory pathways in macrophages to drive inflammatory gene expression. SLAMF8 inhibition can reduce inflammation in RA by blocking ERK/MMPs signaling. Of note, there are differences in SLAMF receptor (SFR) expression between normal and arthritic joint tissues, suggesting a role as potential diagnostic biomarkers. This review summarizes recent advances on the roles of SLAMF receptors 1, 2, 4, 7, and 8 in RA pathogenesis. However, further research is needed to elucidate the mechanisms of SLAMF regulation of immune cells in RA. Understanding interactions between SLAMF receptors and immune cells will help identify selective strategies for targeting SLAMF signaling without compromising normal immunity. Overall, the SLAMF gene family holds promise as a target for precision medicine in RA, but additional investigation of the underlying immunological mechanisms is needed. Targeting SLAMF receptors presents opportunities for new diagnostic and therapeutic approaches to dampen damaging immune-mediated inflammation in RA.

2.
Epigenetics ; 18(1): 2231222, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37393582

RESUMO

DNA methylation (DNAme) alterations are known to initiate from the precancerous stage of tumorigenesis. Herein, we investigated the global and local patterns of DNAme perturbations in tumorigenesis by analysing the genome-wide DNAme profiles of the cervix, colorectum, stomach, prostate, and liver at precancerous and cancer stages. We observed global hypomethylation in tissues of both two stages, except for the cervix, whose global DNAme level in normal tissue was lower than that of the other four tumour types. For alterations shared by both stages, there were common hyper-methylation (sHyperMethyl) and hypo-methylation (sHypoMethyl) changes, of which the latter type was more frequently identified in all tissues. Biological pathways interrupted by sHyperMethyl and sHypoMethyl alterations demonstrated significant tissue specificity. DNAme bidirectional chaos indicated by the enrichment of both sHyperMethyl and sHypoMethyl changes in the same pathway was observed in most tissues and was a common phenomenon, particularly in liver lesions. Moreover, for the same enriched pathways, different tissues may be affected by distinct DNAme types. For the PI3K-Akt signalling pathway, sHyperMethyl enrichment was observed in the prostate dataset, but sHypoMethyl enrichment was observed in the colorectum and liver datasets. Nevertheless, they did not show an increased possibility in survival prediction of patients in comparison with other DNAme types. Additionally, our study demonstrated that gene-body DNAme changes of tumour suppressor genes and oncogenes may persist from precancerous lesions to the tumour. Overall, we demonstrate the tissue specificity and commonality of cross-stage alterations in DNA methylation profiles in multi-tissue tumorigenesis.


Assuntos
Metilação de DNA , Lesões Pré-Cancerosas , Masculino , Feminino , Humanos , Especificidade de Órgãos , Fosfatidilinositol 3-Quinases/genética , Lesões Pré-Cancerosas/genética , Carcinogênese/genética
3.
Funct Integr Genomics ; 23(2): 198, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37273114

RESUMO

Programmed cell death (PCD) resistance is a key driver of cancer occurrence and development. The prognostic relevance of PCD-related genes in hepatocellular carcinoma (HCC) has attracted considerable attention in recent years. However, there is still a lack of efforts to compare the methylation status of different types of PCD genes in HCC and their roles in its surveillance. The methylation status of genes related to pyroptosis, apoptosis, autophagy, necroptosis, ferroptosis, and cuproptosis was analyzed in tumor and non-tumor tissues from TCGA. Whole-genome bisulfite sequencing (WGBS) data of paired tumor tissue and buffy coat samples were used to filter the potential interference of blood leukocytes in cell-free DNA (cfDNA). The WGBS data of healthy individuals' and early-stage HCC patients' cfDNA were analyzed to evaluate the distinguishing ability. The average gene body methylation (gbDNAme) of pyroptosis-related genes (PRGs) was significantly altered in HCC tissues relative to normal tissues, and their distinguishing ability was higher compared to the other types of PCD-related genes. The gbDNAme of NLRP7, NLRP2, and NLRP3 was reflective of the hypomethylation in HCC tissues, and methylation levels of NLRP3 correlated positively with its expression level (r=0.51). The candidate hypomethylated PRGs could discriminate between early HCC patients and healthy controls in cfDNA analysis with high accuracy (area under the receiver operation curve, AUC=0.94). Furthermore, the hypomethylation of PRGs was associated with poor prognosis of HCC. Gene body hypomethylation of PRGs is a promising biomarker for early HCC detection, monitoring of tumor recurrence, and prognosis prediction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Reguladoras de Apoptose , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ácidos Nucleicos Livres , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose/genética
4.
Epigenetics ; 18(1): 2195307, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37005704

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease. However, a detailed DNA methylation (DNAme) landscape has not yet been elucidated. Our study combined DNAme and transcriptome profiles for HCM myocardium and identify aberrant DNAme associated with altered myocardial function in HCM. The transcription of methylation-related genes did not significantly differ between HCM and normal myocardium. Nevertheless, the former had an altered DNAme profile compared with the latter. The hypermethylated and hypomethylated sites in HCM tissues had chromosomal distributions and functional enrichment of correlated genes differing from those of their normal tissue counterparts. The GO analysis of network underlying the genes correlated with DNAme alteration and differentially expressed genes (DEGs) shows functional clusters centred on immune cell function and muscle system processes. In KEGG analysis, only the calcium signalling pathway was enriched either by the genes correlated with changes in DNAme or DEGs. The protein-protein interactions (PPI) underlying the genes altered at both the DNAme and transcriptional highlighted two important functional clusters. One of these was related to the immune response and had the estrogen receptor-encoding ESR1 gene as its node. The other cluster comprised cardiac electrophysiology-related genes. Intelliectin-1 (ITLN1), a component of the innate immune system, was transcriptionally downregulated in HCM and had a hypermethylated site within 1500 bp upstream of the ITLN1 transcription start site. Estimates of immune infiltration demonstrated a relative decline in immune cell population diversity in HCM. A combination of DNAme and transcriptome profiles may help identify and develop new therapeutic targets for HCM.


Assuntos
Cardiomiopatia Hipertrófica , Epigenoma , Humanos , Metilação de DNA , Perfilação da Expressão Gênica , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Transcriptoma , Eletrofisiologia
5.
Front Immunol ; 14: 1137918, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875082

RESUMO

Rheumatoid arthritis (RA) is a complex autoimmune disease characterized by chronic inflammation that affects synovial tissues of multiple joints. Granzymes (Gzms) are serine proteases that are released into the immune synapse between cytotoxic lymphocytes and target cells. They enter target cells with the help of perforin to induce programmed cell death in inflammatory and tumor cells. Gzms may have a connection with RA. First, increased levels of Gzms have been found in the serum (GzmB), plasma (GzmA, GzmB), synovial fluid (GzmB, GzmM), and synovial tissue (GzmK) of patients with RA. Moreover, Gzms may contribute to inflammation by degrading the extracellular matrix and promoting cytokine release. They are thought to be involved in RA pathogenesis and have the potential to be used as biomarkers for RA diagnosis, although their exact role is yet to be fully elucidated. The purpose of this review was to summarize the current knowledge regarding the possible role of the granzyme family in RA, with the aim of providing a reference for future research on the mechanisms of RA and the development of new therapies.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Humanos , Granzimas , Inflamação , Membrana Sinovial
6.
Cell Mol Biol Lett ; 27(1): 108, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476420

RESUMO

Absent in melanoma 2 (AIM2), a member of the Pyrin and HIN domain protein family, is a cytoplasmic receptor that recognizes double-stranded DNA. AIM2 exhibits limited expression under physiological conditions but is widely expressed in many human diseases, including autoimmune diseases, and plays an essential role in the immune response. Rheumatoid arthritis (RA) is an autoimmune disease that poses a severe threat to physical and mental health, and is caused by several genetic and metabolic factors. Multiple immune cells interact to form a complex inflammatory network that mediates inflammatory responses and bone destruction. Abnormal AIM2 expression in multiple immune cell populations (T cells, B cells, fibroblast-like synoviocytes, monocytes, and macrophages) may regulate multiple functional responses in RA through mechanisms such as pyroptosis, PANoptosis, and regulation of other molecules. In this review, we describe and summarize the functional regulation and impact of AIM2 expression in immune cells to improve our understanding of the complex pathological mechanisms. These insights may provide potential directions for the development of new clinical diagnostic strategies for RA.


Assuntos
Artrite Reumatoide , Melanoma , Humanos , Artrite Reumatoide/genética , Proteínas de Ligação a DNA
7.
Front Immunol ; 13: 930278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990673

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease that severely affects patients' physical and mental health, leading to chronic synovitis and destruction of bone joints. Although various available clinical treatment options exist, patients respond with varying efficacies due to multiple factors, and there is an urgent need to discover new treatment options to improve clinical outcomes. Cuproptosis is a newly characterized form of cell death. Copper causes cuproptosis by binding to lipid-acylated components of the tricarboxylic acid cycle, leading to protein aggregation, loss of iron-sulfur cluster proteins, and eventually proteotoxic stress. Targeting copper cytotoxicity and cuproptosis are considered potential options for treating oncological diseases. The synovial hypoxic environment and the presence of excessive glycolysis in multiple cells appear to act as inhibitors of cuproptosis, which can lead to excessive survival and proliferation of multiple immune cells, such as fibroblast-like synoviocytes, effector T cells, and macrophages, further mediating inflammation and bone destruction in RA. Therefore, in this study, we attempted to elaborate and summarize the linkage of cuproptosis and key genes regulating cuproptosis to the pathological mechanisms of RA and their effects on a variety of immune cells. This study aimed to provide a theoretical basis and support for translating preclinical and experimental results of RA to clinical protocols.


Assuntos
Apoptose , Artrite Reumatoide , Sinoviócitos , Sinovite , Humanos , Cobre/metabolismo , Inflamação/metabolismo , Sinoviócitos/metabolismo , Sinovite/patologia
8.
Front Immunol ; 13: 903475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795672

RESUMO

Secreted frizzled-related protein 1 (SFRP1) is a member of secretory glycoprotein SFRP family. As a primitive gene regulating cell growth, development and transformation, SFRP1 is widely expressed in human cells, including various cancer cells and fibroblast-like synoviocytes (FLS) of rheumatoid arthritis (RA). Deletion or silencing of SFRP1 involves epigenetic and other mechanisms, and participates in biological behaviors such as cell proliferation, migration and cell pyroptosis, which leads to disease progression and poor prognosis. In this review, we discuss the role of SFRP1 in the pathogenesis of RA-FLS and summarize different experimental platforms and recent research results. These are helpful for understanding the biological characteristics of SFRP1 in RA, especially the mechanism by which SFRP1 regulates RA-FLS pyroptosis through Wnt/ß-catenin and Notch signaling pathways. In addition, the epigenetic regulation of SFRP1 in RA-FLS is emphasized, which may be considered as a promising biomarker and therapeutic target of RA.


Assuntos
Artrite Reumatoide , Sinoviócitos , Artrite Reumatoide/metabolismo , Células Cultivadas , Epigênese Genética , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Piroptose , Sinoviócitos/metabolismo
9.
Int J Mol Sci ; 22(18)2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34576022

RESUMO

Hepatitis B virus (HBV), the well-studied oncovirus that contributes to the majority of hepatocellular carcinomas (HCC) worldwide, can cause a severe inflammatory microenvironment leading to genetic and epigenetic changes in hepatocyte clones. HBV replication contributes to the regulation of DNA methyltransferase gene expression, particularly by X protein (HBx), and subsequent methylation changes may lead to abnormal transcription activation of adjacent genes and genomic instability. Undoubtedly, the altered expression of these genes has been known to cause diverse aspects of infected hepatocytes, including apoptosis, proliferation, reactive oxygen species (ROS) accumulation, and immune responses. Additionally, pollutant-induced DNA methylation changes and aberrant methylation of imprinted genes in hepatocytes also complicate the process of tumorigenesis. Meanwhile, hepatocytes also contribute to epigenetic modification of the viral genome to affect HBV replication or viral protein production. Meanwhile, methylation levels of HBV integrants and surrounding host regions also play crucial roles in their ability to produce viral proteins in affected hepatocytes. Both host and viral changes can provide novel insights into tumorigenesis, individualized responses to therapeutic intervention, disease progress, and early diagnosis. As such, DNA methylation-mediated epigenetic silencing of cancer-related genes and viral replication is a compelling therapeutic goal to reduce morbidity and mortality from liver cancer caused by chronic HBV infection. In this review, we summarize the most recent research on aberrant DNA methylation associated with HBV infection, which is involved in HCC development, and provide an outlook on the future direction of the research.


Assuntos
Carcinoma Hepatocelular/virologia , Metilação de DNA , Vírus da Hepatite B/fisiologia , Hepatite B Crônica/metabolismo , Neoplasias Hepáticas/virologia , Animais , Carcinogênese , Genoma Viral , Hepatite B Crônica/complicações , Interações Hospedeiro-Patógeno , Humanos , Regiões Promotoras Genéticas
10.
BMC Med ; 18(1): 200, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32741373

RESUMO

BACKGROUND: Circulating cell-free DNA (cfDNA) methylation has been demonstrated to be a promising approach for non-invasive cancer diagnosis. However, the high cost of whole genome bisulfite sequencing (WGBS) hinders the clinical implementation of a methylation-based cfDNA early detection biomarker. We proposed a novel strategy in low-pass WGBS (~ 5 million reads) to detect methylation changes in circulating cell-free DNA (cfDNA) from patients with liver diseases and hepatocellular carcinoma (HCC). METHODS: The effective small sequencing depth were determined by 5 pilot cfDNA samples with relative high-depth WGBS. CfDNA of 51 patients with hepatitis, cirrhosis, and HCC were conducted using low-pass WGBS. The strategy was validated in an independent WGBS cohort of 32 healthy individuals and 26 early-stage HCC patients. Fifteen paired tumor tissue and buffy coat samples were used to characterize the methylation of hepatitis B virus (HBV) integration regions and genome distribution of cfDNA. RESULTS: A significant enrichment of cfDNA in intergenic and repeat regions, especially in previously reported HBV integration sites were observed, as a feature of cfDNA and the bias of cfDNA release. Methylation profiles nearby HBV integration sites were a better indicator for hypomethylation of tumor genome comparing to Alu and LINE (long interspersed nuclear element) repeats, and were able to facilitate the cfDNA-based HCC prediction. Hypomethylation nearby HBV integration sites (5 kb flanking) was detected in HCC patients, but not in patients with hepatitis and cirrhosis (MethylHBV5k, median:0.61 vs 0.72, P = 0.0003). Methylation levels of integration sites certain candidate regions exhibited an area under the receiver operation curve (AUC) value > 0.85 to discriminate HCC from non-HCC samples. The validation cohort achieved the prediction performance with an AUC of 0.954. CONCLUSIONS: Hypomethylation around viral integration sites aids low-pass cfDNA WGBS to serve as a non-invasive approach for early HCC detection, and inspire future efforts on tumor surveillance for oncovirus with integration activity.


Assuntos
Carcinoma Hepatocelular/genética , Ácidos Nucleicos Livres/genética , Metilação de DNA/genética , Genômica/métodos , Vírus da Hepatite B/patogenicidade , Neoplasias Hepáticas/genética , Sulfitos/metabolismo , Estudos de Coortes , Feminino , Humanos , Masculino , Projetos Piloto
11.
Blood ; 133(17): 1888-1898, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30814063

RESUMO

Standard analyses applied to genome-wide association data are well designed to detect additive effects of moderate strength. However, the power for standard genome-wide association study (GWAS) analyses to identify effects from recessive diplotypes is not typically high. We proposed and conducted a gene-based compound heterozygosity test to reveal additional genes underlying complex diseases. With this approach applied to iron overload, a strong association signal was identified between the fibroblast growth factor-encoding gene, FGF6, and hemochromatosis in the central Wisconsin population. Functional validation showed that fibroblast growth factor 6 protein (FGF-6) regulates iron homeostasis and induces transcriptional regulation of hepcidin. Moreover, specific identified FGF6 variants differentially impact iron metabolism. In addition, FGF6 downregulation correlated with iron-metabolism dysfunction in systemic sclerosis and cancer cells. Using the recessive diplotype approach revealed a novel susceptibility hemochromatosis gene and has extended our understanding of the mechanisms involved in iron metabolism.


Assuntos
Exoma/genética , Fator 6 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Hemocromatose/patologia , Hepcidinas/metabolismo , Sobrecarga de Ferro/patologia , Ferro/metabolismo , Sequência de Aminoácidos , Estudos de Casos e Controles , Diploide , Feminino , Fator 6 de Crescimento de Fibroblastos/metabolismo , Seguimentos , Genes Recessivos , Estudo de Associação Genômica Ampla , Hemocromatose/genética , Hepcidinas/genética , Humanos , Sobrecarga de Ferro/genética , Masculino , Pessoa de Meia-Idade , Neoplasias/genética , Neoplasias/patologia , Mapas de Interação de Proteínas , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Homologia de Sequência
12.
Front Immunol ; 8: 860, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791018

RESUMO

OBJECTIVE: Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) is an anti-inflammatory protein implicated in multiple autoimmune and rheumatologic conditions. We hypothesized that lower levels of TNFAIP3 contributes to excessive cytokine production in response to inflammatory stimuli in axial spondyloarthritis (AxSpA). A further aim was to determine the immune signaling and genetic variation regulating TNFAIP3 expression in individual subjects. METHODS: Blood-derived macrophages from 50 AxSpA subjects and 30 healthy controls were assessed for TNFAIP3 expression. Cell lysates were also analyzed for NF-κB, mitogen-activated protein (MAP) kinase and STAT3 phosphorylation, and supernatants for cytokine production. Coding and regulatory regions in the TNFAIP3 gene and other auto-inflammation-implicated genes were sequenced by next-generation sequencing and variants identified. RESULTS: Mean TNFAIP3 was significantly lower in spondyloarthritis macrophages than controls (p = 0.0085). Spondyloarthritis subject macrophages correspondingly produced more TNF-α in response to lipopolysaccharide (LPS, p = 0.015). Subjects with the highest TNFAIP3 produced significantly less TNF-α in response to LPS (p = 0.0023). Within AxSpA subjects, those on TNF blockers or with shorter duration of disease expressed lower levels of TNFAIP3 (p = 0.0011 and 0.0030, respectively). TNFAIP3 expression correlated positively with phosphorylated IκBα, phosphorylated MAP kinases, and unstimulated phosphorylated STAT3, but negatively with LPS or TNF-α-stimulated fold induction of phosphorylated STAT3. Further, subjects with specific groups of variants within TNFAIP3 displayed differences in TNFAIP3 (p = 0.03-0.004). Nominal pQTL associations with genetic variants outside TNFAIP3 were identified. CONCLUSION: Our results suggest that both immune functional and genetic variations contribute to the regulation of TNFAIP3 levels in individual subjects. Decreased expression of TNFAIP3 in AxSpA macrophages correlated with increased LPS-induced TNF-α, and thus, TNFAIP3 dysregulation may be a contributor to excessive inflammatory responses in spondyloarthritis subjects.

13.
PLoS One ; 12(6): e0179655, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28628633

RESUMO

Human anaplasmosis (HA) is an emerging tick-borne disease that may present as a mild flu-like illness or a life threatening, sepsis-like condition. Although disease severity is hypothesized to relate to immunopathology and immune dysfunction in humans, studies to directly measure immune responses in infected humans have been very limited. We quantified cytokines in 80 confirmed HA patients using a multiplex chemiluminescence immunoassay system and compared similarly measured responses in 1000 control subjects. Pro-inflammatory cytokines were significantly elevated in HA patients (all seven p<0.0001). Interferon gamma (IFN-γ) concentrations were particularly high, with average concentrations 7.8 times higher in the HA patients than the controls. A subset of cytokines consisting of IL-1ß, IL-8, IL-6, TNF-α, and IL-10 was also coordinately high and significantly associated with severity of thrombocytopenia in HA patients. Patients with infections in the very acute stage (≤ 4 days ill) tended to have the highest IFN-γ, IL-12p70, and IL-2 levels. Higher concentrations of IL-13 and IL-5 were associated with diarrhea and vomiting. Our findings support a pathophysiological role for a pro-inflammatory response in HA, especially with regard to the modulation of hematopoiesis and subsequent hematopoietic complications.


Assuntos
Anaplasmose/patologia , Citocinas/análise , Imunoensaio , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anaplasmose/complicações , Anaplasmose/imunologia , Anaplasmose/metabolismo , Estudos de Casos e Controles , Criança , Pré-Escolar , Diarreia/etiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Índice de Gravidade de Doença , Células Th1/citologia , Células Th1/metabolismo , Células Th2/citologia , Células Th2/metabolismo , Vômito/etiologia , Adulto Jovem
14.
PLoS One ; 10(12): e0145453, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26683192

RESUMO

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a disease characterized by intense and debilitating fatigue not due to physical activity that has persisted for at least 6 months, post-exertional malaise, unrefreshing sleep, and accompanied by a number of secondary symptoms, including sore throat, memory and concentration impairment, headache, and muscle/joint pain. In patients with post-exertional malaise, significant worsening of symptoms occurs following physical exertion and exercise challenge serves as a useful method for identifying biomarkers for exertion intolerance. Evidence suggests that intestinal dysbiosis and systemic responses to gut microorganisms may play a role in the symptomology of ME/CFS. As such, we hypothesized that post-exertion worsening of ME/CFS symptoms could be due to increased bacterial translocation from the intestine into the systemic circulation. To test this hypothesis, we collected symptom reports and blood and stool samples from ten clinically characterized ME/CFS patients and ten matched healthy controls before and 15 minutes, 48 hours, and 72 hours after a maximal exercise challenge. Microbiomes of blood and stool samples were examined. Stool sample microbiomes differed between ME/CFS patients and healthy controls in the abundance of several major bacterial phyla. Following maximal exercise challenge, there was an increase in relative abundance of 6 of the 9 major bacterial phyla/genera in ME/CFS patients from baseline to 72 hours post-exercise compared to only 2 of the 9 phyla/genera in controls (p = 0.005). There was also a significant difference in clearance of specific bacterial phyla from blood following exercise with high levels of bacterial sequences maintained at 72 hours post-exercise in ME/CFS patients versus clearance in the controls. These results provide evidence for a systemic effect of an altered gut microbiome in ME/CFS patients compared to controls. Upon exercise challenge, there were significant changes in the abundance of major bacterial phyla in the gut in ME/CFS patients not observed in healthy controls. In addition, compared to controls clearance of bacteria from the blood was delayed in ME/CFS patients following exercise. These findings suggest a role for an altered gut microbiome and increased bacterial translocation following exercise in ME/CFS patients that may account for the profound post-exertional malaise experienced by ME/CFS patients.


Assuntos
Bacteriemia/microbiologia , Síndrome de Fadiga Crônica/microbiologia , Microbioma Gastrointestinal , Adulto , Bacillus/genética , Bacteriemia/sangue , Bacteriemia/fisiopatologia , Estudos de Casos e Controles , Síndrome de Fadiga Crônica/sangue , Síndrome de Fadiga Crônica/fisiopatologia , Fezes/microbiologia , Feminino , Firmicutes/genética , Humanos , Masculino , Pessoa de Meia-Idade , Esforço Físico
16.
J Invest Dermatol ; 129(12): 2777-83, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19554022

RESUMO

Genetic and environmental factors influence the development of psoriasis (Ps) and psoriatic arthritis (PsA). Recently, we reported that three IL13 polymorphisms, rs1800925, rs20541, and rs848, on chromosome 5q31 conferred the risk for Ps. IL13 encodes IL-13, a Th2 cytokine, and rs1800925 and rs20541 confer risk of asthma. Further, smoking may increase the risk of developing Ps. We examined the association between IL13 polymorphisms, smoking, and PsA in two Ps sample sets genotyped for rs1800925, rs20541, and rs848. We found that the minor alleles (rs1800925*T, rs20541*A, and rs848*A) were significantly associated with protection from PsA versus controls, and that no association with Ps is seen when the PsA cases are excluded. This effect was strongest with rs1800925*T (odds ratio (OR) 0.40, P(allelic) 0.000067). The prevalence of PsA in cases with the rs1800925*CT or TT genotype is about half that of those with the CC genotype (15.5 vs 32.1%, P=0.0002). However, smoking appears to abrogate this effect (CT/TT/non-smoker, prevalence of PsA 13%, OR 0.20, P=0.0001; CT/TT/smoker, prevalence 38%, OR 0.88, P=0.74, CC/non-smoker, prevalence 42% (reference), CC/smoker prevalence 47%, OR 1.21, P=0.47). This study suggests that IL13 polymorphisms associate most strongly with PsA and that smoking may modulate this effect.


Assuntos
Artrite Psoriásica/epidemiologia , Artrite Psoriásica/genética , Interleucina-13/genética , Fumar/epidemiologia , Fumar/genética , Adolescente , Adulto , Idade de Início , Cromossomos Humanos Par 5 , Feminino , Predisposição Genética para Doença/epidemiologia , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético , Prevalência , Fatores de Risco , Utah/epidemiologia , Adulto Jovem
17.
Nat Genet ; 41(2): 199-204, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19169254

RESUMO

Psoriasis is a common immune-mediated disorder that affects the skin, nails and joints. To identify psoriasis susceptibility loci, we genotyped 438,670 SNPs in 1,409 psoriasis cases and 1,436 controls of European ancestry. We followed up 21 promising SNPs in 5,048 psoriasis cases and 5,041 controls. Our results provide strong support for the association of at least seven genetic loci and psoriasis (each with combined P < 5 x 10(-8)). Loci with confirmed association include HLA-C, three genes involved in IL-23 signaling (IL23A, IL23R, IL12B), two genes that act downstream of TNF-alpha and regulate NF-kappaB signaling (TNIP1, TNFAIP3) and two genes involved in the modulation of Th2 immune responses (IL4, IL13). Although the proteins encoded in these loci are known to interact biologically, we found no evidence for epistasis between associated SNPs. Our results expand the catalog of genetic loci implicated in psoriasis susceptibility and suggest priority targets for study in other auto-immune disorders.


Assuntos
Predisposição Genética para Doença , Interleucina-23/genética , NF-kappa B/genética , Psoríase/genética , Transdução de Sinais/genética , Adulto , Estudos de Casos e Controles , Proteínas de Ligação a DNA/genética , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Antígenos HLA-C/genética , Humanos , Subunidade p40 da Interleucina-12/genética , Interleucina-13/genética , Interleucina-4/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Adulto Jovem
18.
Hum Mol Genet ; 17(19): 2978-85, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18614543

RESUMO

Predisposition to psoriasis is known to be affected by genetic variation in HLA-C, IL12B and IL23R, but other genetic risk factors also exist. We recently reported three psoriasis-associated single nucleotide polymorphisms (SNPs) in the 5q31 locus, a region of high linkage disequilibrium laden with inflammatory pathway genes. The aim of this study was to assess whether other variants in the 5q31 region are causal to these SNPs or make independent contributions to psoriasis risk by genotyping a comprehensive set of tagging SNPs in a 725 kb region bounded by IL3 and IL4 and testing for disease association. Ninety SNPs, capturing 86.4% of the genetic diversity, were tested in one case-control sample set (467 cases/460 controls) and significant markers (P(allelic) < 0.05) (n = 9) were then tested in two other sample sets (981 cases/925 controls). All nine SNPs were significant in a meta-analysis of the combined sample sets. Pair-wise conditional association tests showed rs1800925, an intergenic SNP located just upstream of IL13 (Mantel-Haenszel P(combined) = 1.5 x 10(-4), OR = 0.77 [0.67-0.88]), could account for observed significant association of all but one other SNP, rs11568506 in SLC22A4 [Mantel-Haenszel P(combined) = 0.043, OR = 0.68 (0.47-0.99)]. Haplotype analysis of these two SNPs showed increased significance for the two common haplotypes (rs11568506-rs1800925: GC, P(combined) = 5.67 x 10(-6), OR = 1.37; GT, P(combined) = 6.01 x 10(-5), OR = 0.75; global haplotype P = 8.93 x 10(-5)). Several 5q31-region SNPs strongly associated with Crohn's disease (CD) in the recent WTCCC study were not significant in the psoriasis sample sets tested here. These results identify the most significant 5q31 risk variants for psoriasis and suggest that distinct 5q31 variants contribute to CD and psoriasis risk.


Assuntos
Cromossomos Humanos Par 5/genética , Doença de Crohn/genética , Variação Genética , Psoríase/genética , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética
19.
Gastroenterology ; 130(6): 1679-87, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16697732

RESUMO

BACKGROUND & AIMS: Previously identified clinical risk factors such as sex, alcohol consumption, and age at infection do not accurately predict which patients with chronic hepatitis C (CHC) will develop advanced fibrosis (bridging fibrosis and cirrhosis). The aim of this study was to identify genetic polymorphisms that can predict the risk of advanced fibrosis in patients with CHC. METHODS: A total of 916 subjects with CHC was enrolled from 2 centers. A gene-centric disease association study of 24,832 putative functional, single nucleotide polymorphisms (SNPs) was performed. Of the 1609 SNPs that were significantly associated (P

Assuntos
Predisposição Genética para Doença , Hepatite C Crônica/genética , Hepatite C Crônica/patologia , Cirrose Hepática/genética , Polimorfismo Genético , Proteínas Quinases/genética , RNA Helicases/genética , Adolescente , Adulto , Idoso , Alelos , RNA Helicases DEAD-box , Progressão da Doença , Feminino , Regulação da Expressão Gênica , Haplótipos , Heterozigoto , Humanos , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Probabilidade , Prognóstico , Estudos Prospectivos , Medição de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença
20.
Am J Hum Genet ; 77(4): 567-81, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16175503

RESUMO

The minor allele of the R620W missense single-nucleotide polymorphism (SNP) (rs2476601) in the hematopoietic-specific protein tyrosine phosphatase gene, PTPN22, has been associated with multiple autoimmune diseases, including rheumatoid arthritis (RA). These genetic data, combined with biochemical evidence that this SNP affects PTPN22 function, suggest that this phosphatase is a key regulator of autoimmunity. To determine whether other genetic variants in PTPN22 contribute to the development of RA, we sequenced the coding regions of this gene in 48 white North American patients with RA and identified 15 previously unreported SNPs, including 2 coding SNPs in the catalytic domain. We then genotyped 37 SNPs in or near PTPN22 in 475 patients with RA and 475 individually matched controls (sample set 1) and selected a subset of markers for replication in an additional 661 patients with RA and 1,322 individually matched controls (sample set 2). Analyses of these results predict 10 common (frequency >1%) PTPN22 haplotypes in white North Americans. The sole haplotype found to carry the previously identified W620 risk allele was strongly associated with disease in both sample sets, whereas another haplotype, identical at all other SNPs but carrying the R620 allele, showed no association. R620W, however, does not fully explain the association between PTPN22 and RA, since significant differences between cases and controls persisted in both sample sets after the haplotype data were stratified by R620W. Additional analyses identified two SNPs on a single common haplotype that are associated with RA independent of R620W, suggesting that R620W and at least one additional variant in the PTPN22 gene region influence RA susceptibility.


Assuntos
Artrite Reumatoide/genética , Variação Genética , Proteínas Tirosina Fosfatases/genética , Sequência de Bases , DNA/genética , Haplótipos , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Proteína Tirosina Fosfatase não Receptora Tipo 22 , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA