Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Fluids Barriers CNS ; 20(1): 76, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875964

RESUMO

BACKGROUND: As a consequence of SARS-CoV-2 infection various neurocognitive and neuropsychiatric symptoms can appear, which may persist for several months post infection. However, cell type-specific routes of brain infection and underlying mechanisms resulting in neuroglial dysfunction are not well understood. METHODS: Here, we investigated the susceptibility of cells constituting the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP) to SARS-CoV-2 infection using human induced pluripotent stem cell (hiPSC)-derived cellular models and a ChP papilloma-derived epithelial cell line as well as ChP tissue from COVID-19 patients, respectively. RESULTS: We noted a differential infectibility of hiPSC-derived brain microvascular endothelial cells (BMECs) depending on the differentiation method. Extended endothelial culture method (EECM)-BMECs characterized by a complete set of endothelial markers, good barrier properties and a mature immune phenotype were refractory to SARS-CoV-2 infection and did not exhibit an activated phenotype after prolonged SARS-CoV-2 inoculation. In contrast, defined medium method (DMM)-BMECs, characterized by a mixed endothelial and epithelial phenotype and excellent barrier properties were productively infected by SARS-CoV-2 in an ACE2-dependent manner. hiPSC-derived brain pericyte-like cells (BPLCs) lacking ACE2 expression were not susceptible to SARS-CoV-2 infection. Furthermore, the human choroid plexus papilloma-derived epithelial cell line HIBCPP, modeling the BCSFB was productively infected by SARS-CoV-2 preferentially from the basolateral side, facing the blood compartment. Assessment of ChP tissue from COVID-19 patients by RNA in situ hybridization revealed SARS-CoV-2 transcripts in ChP epithelial and ChP stromal cells. CONCLUSIONS: Our study shows that the BCSFB of the ChP rather than the BBB is susceptible to direct SARS-CoV-2 infection. Thus, neuropsychiatric symptoms because of COVID-19 may rather be associated with dysfunction of the BCSFB than the BBB. Future studies should consider a role of the ChP in underlying neuropsychiatric symptoms following SARS-CoV-2 infection.


Assuntos
COVID-19 , Células-Tronco Pluripotentes Induzidas , Humanos , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , SARS-CoV-2/metabolismo , Pericitos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Epiteliais/metabolismo , Plexo Corióideo/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1113528, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065199

RESUMO

The Gram-negative bacterium Neisseria meningitidis, which causes meningitis in humans, has been demonstrated to manipulate or alter host signalling pathways during infection of the central nervous system (CNS). However, these complex signalling networks are not completely understood. We investigate the phosphoproteome of an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with the N. meningitidis serogroup B strain MC58 in presence and absence of the bacterial capsule. Interestingly, our data demonstrates a stronger impact on the phosphoproteome of the cells by the capsule-deficient mutant of MC58. Using enrichment analyses, potential pathways, molecular processes, biological processes, cellular components and kinases were determined to be regulated as a consequence of N. meningitidis infection of the BCSFB. Our data highlight a variety of protein regulations that are altered during infection of CP epithelial cells with N. meningitidis, with the regulation of several pathways and molecular events only being detected after infection with the capsule-deficient mutant. Mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD038560.


Assuntos
Neisseria meningitidis , Humanos , Neisseria meningitidis/fisiologia , Plexo Corióideo/microbiologia , Células Epiteliais/microbiologia , Barreira Hematoencefálica/microbiologia , Linhagem Celular Tumoral
3.
Cell Tissue Res ; 392(2): 393-412, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36781482

RESUMO

Endothelial cells play a major part in the regulation of vascular permeability and angiogenesis. According to their duty to fit the needs of the underlying tissue, endothelial cells developed different subtypes with specific endothelial microdomains as caveolae, fenestrae and transendothelial channels which regulate nutrient exchange, leukocyte migration, and permeability. These microdomains can exhibit diaphragms that are formed by the endothelial cell-specific protein plasmalemma vesicle-associated protein (PLVAP), the only known protein component of these diaphragms. Several studies displayed an involvement of PLVAP in diseases as cancer, traumatic spinal cord injury, acute ischemic brain disease, transplant glomerulopathy, Norrie disease and diabetic retinopathy. Besides an upregulation of PLVAP expression within these diseases, pro-angiogenic or pro-inflammatory responses were observed. On the other hand, loss of PLVAP in knockout mice leads to premature mortality due to disrupted homeostasis. Generally, PLVAP is considered as a major factor influencing the permeability of endothelial cells and, finally, to be involved in the regulation of vascular permeability. Following these observations, PLVAP is debated as a novel therapeutic target with respect to the different vascular beds and tissues. In this review, we highlight the structure and functions of PLVAP in different endothelial types in health and disease.


Assuntos
Retinopatia Diabética , Células Endoteliais , Animais , Encéfalo/metabolismo , Permeabilidade Capilar/fisiologia , Proteínas de Transporte/metabolismo , Células Endoteliais/metabolismo , Proteínas de Membrana/metabolismo , Humanos
4.
STAR Protoc ; 3(4): 101816, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36386888

RESUMO

Choroid plexus, located in brain ventricles, is the site of blood-cerebrospinal fluid barrier that contains endothelial cells and an epithelial monolayer separated by stroma. We established a two-cell-type model of the human choroid plexus consisting of immortalized endothelial cells (iHCPEnC) and epithelial papilloma (HIBCPP) cells grown on opposite sides of filter supports. In this protocol, we describe the preparation of this model, the measurement of transepithelial electrical resistance (TEER), and immunofluorescence imaging-based analysis to determine the barrier function. For complete details on the use and execution of this protocol, please refer to Muranyi et al. (2022).


Assuntos
Plexo Corióideo , Células Endoteliais , Humanos , Células Epiteliais , Barreira Hematoencefálica , Contagem de Células
5.
STAR Protoc ; 3(4): 101676, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103307

RESUMO

At present, the only approach to investigate the transmigration of Trypanosoma brucei, the causative agent of human African trypanosomiasis, from blood to cerebrospinal fluid is through animal experiments. This protocol details how to analyze the transmigration efficiency using an in vitro model of the blood-cerebrospinal fluid (blood-CSF) barrier. We describe how to grow human choroid plexus epithelial cells on cell culture filter inserts to form the barrier, followed by isolating and quantifying genomic DNA of transmigrated parasites by qPCR. For complete details on the use and execution of this protocol, please refer to Speidel et al. (2022).


Assuntos
Barreira Hematoencefálica , Células Epiteliais , Animais , Humanos , Técnicas de Cultura de Células
6.
JAMA Netw Open ; 5(9): e2233454, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36166227

RESUMO

Importance: During the COVID-19 pandemic, a reduction in quality of life and physical and mental health among children and adolescents has been reported that may be associated with SARS-CoV-2 infection and/or containment measures. Objective: To assess the association of SARS-CoV-2 seropositivity with symptoms that may be related to myalgic encephalomyelitis and/or chronic fatigue syndrome (ME/CFS) among children and adolescents. Design, Setting, and Participants: This substudy of the cross-sectional SARS-CoV-2 seroprevalence surveys in Germany (SARS-CoV-2 KIDS) was performed in 9 pediatric hospitals from May 1 to October 31, 2021. Pediatric patients were recruited during an inpatient or outpatient visit regardless of the purpose of the visit. Parental questionnaires and serum samples were collected during clinically indicated blood draws. The parental questionnaire on demographic and clinical information was extended by items according to the DePaul Symptom Questionnaire, a pediatric screening tool for ME/CFS in epidemiological studies in patients aged 5 to 17 years. Exposures: Seropositivity was determined by SARS-CoV-2 IgG antibodies in serum samples using enzyme-linked immunosorbent assays. Main Outcomes and Measures: Key symptoms of ME/CFS were evaluated separately or as clustered ME/CFS symptoms according to the DePaul Symptom Questionnaire, including fatigue. Results: Among 634 participants (294 male [46.4%] and 340 female [53.6%]; median age, 11.5 [IQR, 8-14] years), 198 (31.2%) reported clustered ME/CFS symptoms, including 40 of 100 SARS-CoV-2-seropositive (40.0%) and 158 of 534 SARS-CoV-2-seronegative (29.6%) children and adolescents. After adjustment for sex, age group, and preexisting disease, the risk ratio for reporting clustered ME/CFS symptoms decreased from 1.35 (95% CI, 1.03-1.78) to 1.18 (95% CI, 0.90-1.53) and for substantial fatigue from 2.45 (95% CI, 1.24-4.84) to 2.08 (95% CI, 1.05-4.13). Confinement to children and adolescents with unknown previous SARS-CoV-2 infection status (n = 610) yielded lower adjusted risks for all symptoms except joint pain ME/CFS-related symptoms. The adjusted risk ratio was 1.08 (95% CI, 0.80-1.46) for reporting clustered ME/CFS symptoms and 1.43 (95% CI, 0.63-3.23) for fatigue. Conclusions and Relevance: These findings suggest that the risk of ME/CFS in children and adolescents owing to SARS-CoV-2 infection may be very small. Recall bias may contribute to risk estimates of long COVID-19 symptoms in children. Extensive lockdowns must be considered as an alternative explanation for complex unspecific symptoms during the COVID-19 pandemic.


Assuntos
COVID-19 , Síndrome de Fadiga Crônica , Adolescente , COVID-19/complicações , COVID-19/epidemiologia , Criança , Controle de Doenças Transmissíveis , Estudos Transversais , Síndrome de Fadiga Crônica/epidemiologia , Síndrome de Fadiga Crônica/psicologia , Feminino , Alemanha/epidemiologia , Humanos , Imunoglobulina G , Masculino , Pandemias , Qualidade de Vida , SARS-CoV-2 , Estudos Soroepidemiológicos , Síndrome de COVID-19 Pós-Aguda
7.
Am J Physiol Cell Physiol ; 323(6): C1823-C1842, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35938676

RESUMO

The objectives of these studies were twofold: 1) to characterize the human choroid plexus papilloma (HIBCPP) cell line as a model of the blood-cerebrospinal fluid barrier (BCSFB) via morphology, tightness, and polarization of transporters in choroid plexus epithelia (CPe), and 2) to utilize Ussing-style electrophysiology to elucidate signaling pathways associated with the activation of the transient receptor potential vanilloid 4 (TRPV4) channel involved in cerebrospinal fluid (CSF) secretion. RT-PCR was implemented to determine gene expression of cell fate markers, junctional complex proteins, and transporters of interest. Scanning electron microscopy and confocal three-dimensional renderings of cultures grown on permeable supports were utilized to delineate the morphology of the brush border, junctional complexes, and polarization of key transporters. Electrophysiology was used to understand and explore TRPV4-mediated signaling in the HIBCPP cell line, considering both short-circuit current (Isc) and conductance responses. HIBCPP cells grown under optimized culture conditions exhibited minimal multilayering, developed an intermediate resistance monolayer, retained differentiation properties, and expressed, and correctly localized, junctional proteins and native transporters. We found that activation of TRPV4 resulted in a robust, multiphasic change in electrogenic ion flux and increase in conductance accompanied by substantial fluid secretion. This response appears to be modulated by a number of different effectors, implicating phospholipase C (PLC), protein kinase C (PKC), and phosphoinositide 3-kinase (PI3K) in TRPV4-mediated ion flux. The HIBCPP cell line is a representative model of the human BCSFB, which can be utilized for studies of transporter function, intracellular signaling, and regulation of CSF production.


Assuntos
Plexo Corióideo , Fosfatidilinositol 3-Quinases , Humanos , Plexo Corióideo/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular , Barreira Hematoencefálica/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
8.
Fluids Barriers CNS ; 18(1): 53, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34863201

RESUMO

BACKGROUND: The Gram-negative bacterium Neisseria meningitidis (Nm) can cause meningitis in humans, but the host signalling pathways manipulated by Nm during central nervous system (CNS) entry are not completely understood. METHODS: We investigate the role of the mitogen-activated protein kinases (MAPK) Erk1/2 and p38 in an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB) based on human epithelial choroid plexus (CP) papilloma (HIBCPP) cells during infection with Nm serogroup B (NmB) and serogroup C (NmC) strains. A transcriptome analysis of HIBCPP cells following infection with Nm by massive analysis of cDNA ends (MACE) was done to further characterize the cellular response to infection of the barrier. RESULTS: Interestingly, whereas NmB and NmC wild type strains required active Erk1/2 and p38 pathways for infection, invasion by capsule-deficient mutants was independent of Erk1/2 and, in case of the NmB strain, of p38 activity. The transcriptome analysis of HIBCPP cells following infection with Nm demonstrated specific regulation of genes involved in the immune response dependent on Erk1/2 signalling. Gene ontology (GO) analysis confirmed loss of MAPK signalling after Erk1/2 inhibition and revealed an additional reduction of cellular responses including NFκB and JAK-STAT signalling. Interestingly, GO terms related to TNF signalling and production of IL6 were lost specifically following Erk1/2 inhibition during infection with wild type Nm, which correlated with the reduced infection rates by the wild type in absence of Erk1/2 signalling. CONCLUSION: Our data point towards a role of MAPK signalling during infection of the CP epithelium by Nm, which is strongly influenced by capsule expression, and affects infection rates as well as the host cell response.


Assuntos
Barreira Hematoencefálica , Líquido Cefalorraquidiano , Plexo Corióideo , Células Epiteliais , Interações Hospedeiro-Patógeno/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Neisseria meningitidis/patogenicidade , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Linhagem Celular Tumoral , Líquido Cefalorraquidiano/imunologia , Líquido Cefalorraquidiano/metabolismo , Líquido Cefalorraquidiano/microbiologia , Plexo Corióideo/imunologia , Plexo Corióideo/metabolismo , Plexo Corióideo/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos
9.
Pathogens ; 10(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34451525

RESUMO

Febrile seizures (FS) affect up to 5% of children. The pathogen etiology in regard of viral loads has never been investigated. In a prospective cohort study we investigated the correlation between virus type and quantity in nasopharyngeal aspirates (NPAs) and the clinical characteristics in pediatric patients with a FS. From January 2014 to April 2016, 184 children with a FS were prospectively enrolled. The mean age of all included children was 26.7 ± 18.3 months with a male to female ratio of 1.4:1. Males with an acute disease and a short duration or absence of prior symptoms had a higher risk for complex FS. The majority of patients with FS presented with a generalized convulsion (180; 98%) and was admitted to hospital (178; 97%). Overall, 79 (43%) single and in 59 (32%) co-infections were detected. Human herpes virus 6 (HHV6), influenza, adenovirus (AV) and rhinovirus (RV) were the dominant pathogens, all detected with clinically significant high viral loads. HHV6 positive cases were significantly younger and less likely to have a positive family/personal history for FS. Influenza positives showed a higher rate of complex seizures, lower leukocyte and higher monocyte counts. AV positive cases were more likely to have a positive family history for FS and showed higher C-reactive protein values. In conclusion, a high viral load may contribute to the development of a FS in respiratory tract infections.

10.
Pathog Dis ; 79(7)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34410374

RESUMO

Neisseria meningitis (Nm) is a human-specific bacterial pathogen that can cause sepsis and meningitis. To cause meningitis Nm must enter the central nervous system (CNS) across one of the barriers between the blood and the brain. We have previously shown that a capsule-depleted Serogroup B strain of Nm displays enhanced invasion into human choroid plexus (CP) epithelial papilloma (HIBCPP) cells, which represent an in vitro model of the blood-cerebrospinal fluid barrier (BCSFB). Still, the processes involved during CNS invasion by Nm, especially the role of host cell actin cytoskeleton remodeling, are not investigated in detail. Here, we demonstrate that invasion into CP epithelial cells by encapsulated and capsule-depleted Nm is mediated by distinct host cell pathways. Whereas a Serogroup B wild-type strain enters HIBCPP cells by a possibly dynamin-independent, but actin related protein 2/3 (Arp2/3)-dependent mechanism, invasion by a capsule-depleted mutant is reduced by the dynamin inhibitor dynasore and Arp2/3-independent. Both wild-type and mutant bacteria require Src kinase activity for entry into HIBCPP cells. Our data show that Nm can employ different mechanisms for invasion into the CP epithelium dependent on the presence of a capsule.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Cápsulas/metabolismo , Dinaminas/metabolismo , Células Epiteliais/microbiologia , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/metabolismo , Actinas/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/microbiologia , Células Cultivadas , Plexo Corióideo/metabolismo , Plexo Corióideo/microbiologia , Endocitose , Células Epiteliais/metabolismo , Epitélio/metabolismo , Epitélio/microbiologia , Interações Hospedeiro-Patógeno , Humanos , Neisseria meningitidis/patogenicidade , Transdução de Sinais , Virulência , Quinases da Família src/metabolismo
11.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281178

RESUMO

Quercetin-3-glucuronide (Q3GA), the main phase II metabolite of quercetin (Q) in human plasma, is considered to be a more stable form of Q for transport with the bloodstream to tissues, where it can be potentially deconjugated by ß-glucuronidase (ß-Gluc) to Q aglycone, which easily enters the brain. This study evaluates the effect of lipopolysaccharide (LPS)-induced acute inflammation on ß-Gluc gene expression in the choroid plexus (ChP) and its activity in blood plasma, ChP and cerebrospinal fluid (CSF), and the concentration of Q and its phase II metabolites in blood plasma and CSF. Studies were performed on saline- and LPS-treated adult ewes (n = 40) receiving Q3GA intravenously (n = 16) and on primary rat ChP epithelial cells and human ChP epithelial papilloma cells. We observed that acute inflammation stimulated ß-Gluc activity in the ChP and blood plasma, but not in ChP epithelial cells and CSF, and did not affect Q and its phase II metabolite concentrations in plasma and CSF, except Q3GA, for which the plasma concentration was higher 30 min after administration (p < 0.05) in LPS- compared to saline-treated ewes. The lack of Q3GA deconjugation in the ChP observed under physiological and acute inflammatory conditions, however, does not exclude its possible role in the course of neurodegenerative diseases.


Assuntos
Plexo Corióideo/metabolismo , Glucuronidase/metabolismo , Quercetina/metabolismo , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Plexo Corióideo/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Glucuronidase/sangue , Glucuronidase/líquido cefalorraquidiano , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Cultura Primária de Células , Quercetina/análogos & derivados , Quercetina/sangue , Quercetina/líquido cefalorraquidiano , Ratos , Ratos Wistar , Ovinos
12.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-32872518

RESUMO

Echovirus-30 (E-30) is responsible for the extensive global outbreaks of meningitis in children. To gain access to the central nervous system, E-30 first has to cross the epithelial blood-cerebrospinal fluid barrier. Several meningitis causing bacteria preferentially infect human choroid plexus papilloma (HIBCPP) cells in a polar fashion from the basolateral cell side. Here, we investigated the polar infection of HIBCPP cells with E-30. Both apical and basolateral infections caused a significant decrease in the transepithelial electrical resistance of HIBCPP cells. However, to reach the same impact on the barrier properties, the multiplicity of infection of the apical side had to be higher than that of the basolateral infection. Furthermore, the number of infected cells at respective time-points after basolateral infection was significantly higher compared to apical infection. Cytotoxic effects of E-30 on HIBCPP cells during basolateral infection were observed following prolonged infection and appeared more drastically compared to the apical infection. Gene expression profiles determined by massive analysis of cDNA ends revealed distinct regulation of specific genes depending on the side of HIBCPP cells' infection. Altogether, our data highlights the polar effects of E-30 infection in a human in vitro model of the blood-cerebrospinal fluid barrier leading to central nervous system inflammation.


Assuntos
Barreira Hematoencefálica/virologia , Plexo Corióideo/virologia , Enterovirus Humano B/patogenicidade , Redes Reguladoras de Genes , Adulto , Barreira Hematoencefálica/metabolismo , Polaridade Celular , Sobrevivência Celular , Plexo Corióideo/citologia , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Impedância Elétrica , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Biológicos , Células Tumorais Cultivadas
13.
Int J Mol Sci ; 21(16)2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32785145

RESUMO

Non-typeable Haemophilus influenzae (NTHI) is a pathogen of the human respiratory tract causing the majority of invasive H. influenzae infections. Severe invasive infections such as septicemia and meningitis occur rarely, but the lack of a protecting vaccine and the increasing antibiotic resistance of NTHI impede treatment and emphasize its relevance as a potential meningitis causing pathogen. Meningitis results from pathogens crossing blood-brain barriers and invading the immune privileged central nervous system (CNS). In this study, we addressed the potential of NTHI to enter the brain by invading cells of the choroid plexus (CP) prior to meningeal inflammation to enlighten NTHI pathophysiological mechanisms. A cell culture model of human CP epithelial cells, which form the blood-cerebrospinal fluid barrier (BCSFB) in vivo, was used to analyze adhesion and invasion by immunofluorescence and electron microscopy. NTHI invade CP cells in vitro in a polar fashion from the blood-facing side. Furthermore, NTHI invasion rates are increased compared to encapsulated HiB and HiF strains. Fimbriae occurrence attenuated adhesion and invasion. Thus, our findings underline the role of the BCSFB as a potential entry port for NTHI into the brain and provide strong evidence for a function of the CP during NTHI invasion into the CNS during the course of meningitis.


Assuntos
Plexo Corióideo/citologia , Plexo Corióideo/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Infecções por Haemophilus/metabolismo , Haemophilus influenzae/patogenicidade , Interações Hospedeiro-Patógeno , Aderência Bacteriana , Barreira Hematoencefálica , Linhagem Celular Tumoral , Polaridade Celular , Sobrevivência Celular , DNA Bacteriano/genética , Fímbrias Bacterianas , Infecções por Haemophilus/microbiologia , Haemophilus influenzae/genética , Haemophilus influenzae/isolamento & purificação , Humanos , Meningite/líquido cefalorraquidiano , Meningite/microbiologia , Virulência , Fatores de Virulência
14.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752027

RESUMO

Central nervous System (CNS) disease in pediatric acute lymphoblastic leukemia (ALL) is a major concern, but still, cellular mechanisms of CNS infiltration are elusive. The choroid plexus (CP) is a potential entry site, and, to some extent, invasion resembles CNS homing of lymphocytes during healthy state. Given exosomes may precondition target tissue, the present work aims to investigate if leukemia-derived exosomes contribute to a permissive phenotype of the blood-cerebrospinal fluid barrier (BCSFB). Leukemia-derived exosomes were isolated by ultracentrifugation from the cell lines SD-1, Nalm-6, and P12-Ichikawa (P12). Adhesion and uptake to CP epithelial cells and the significance on subsequent ALL transmigration across the barrier was studied in a human BCSFB in vitro model based on the HiBCPP cell line. The various cell lines markedly differed regarding exosome uptake to HiBCPP and biological significance. SD-1-derived exosomes associated to target cells unspecifically without detectable cellular effects. Whereas Nalm-6 and P12-derived exosomes incorporated by dynamin-dependent endocytosis, uptake in the latter could be diminished by integrin blocking. In addition, only P12-derived exosomes led to facilitated transmigration of the parental leukemia cells. In conclusion, we provide evidence that, to a varying extent, leukemia-derived exosomes may facilitate CNS invasion of ALL across the BCSFB without destruction of the barrier integrity.


Assuntos
Plexo Corióideo/metabolismo , Vesículas Extracelulares/genética , Invasividade Neoplásica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/metabolismo , Doenças do Sistema Nervoso Central/patologia , Plexo Corióideo/patologia , Endocitose/genética , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Linfócitos/metabolismo , Linfócitos/patologia , Invasividade Neoplásica/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transporte Proteico/genética
15.
Biochem Pharmacol ; 177: 113953, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272108

RESUMO

The regulation of transport mechanisms at brain barriers must be thoroughly understood, so that novel strategies for improving drug delivery to the brain can be designed. The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelial cells has been poorly studied in this regard despite its relevance for the protection of the central nervous system (CNS). This study assessed the role of bitter taste receptors (TAS2Rs), TAS2R14 and TAS2R39, in the transport of resveratrol across CP epithelial cells using an in vitro model of the human BCSFB. Both receptors are expressed in human CP cells and known to bind resveratrol. First, Ca2+ imaging assays demonstrated that resveratrol specifically activates the TAS2R14 receptor, but not TAS2R39, in these human CP epithelial cells. Then, we proceeded with permeation studies that showed resveratrol can cross the human BCSFB, from the blood to the CSF side and that TAS2R14 knockdown decreased the transport of resveratrol across these cells. Conversely, inhibition of efflux transporters ABCC1, ABCC4 or ABCG2 also restrained the transport of resveratrol across these cells. Interestingly, resveratrol upregulated the expression of ABCG2 located at the apical membrane of the cells via TAS2R14, whereas ABCC1 and ABCC4 at the basolateral membrane of the cells were not affected. Altogether, our study demonstrates that the BCSFB is a gateway for resveratrol entrance into the CNS and that the receptor TAS2R14 regulates its transport by regulating the action of efflux transporters at CP epithelial cells.


Assuntos
Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Resveratrol/sangue , Resveratrol/líquido cefalorraquidiano , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Plexo Corióideo/citologia , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Interferência de RNA , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/genética , Resveratrol/farmacologia , Papilas Gustativas/metabolismo
16.
Biochem Pharmacol ; 177: 113954, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32251676

RESUMO

The choroid plexus (CP) epithelial cells establish an important blood-brain interface, the blood-cerebrospinal fluid barrier (BCSFB), which constitutes a complementary gateway to the blood-brain-barrier for the entrance of several molecules into the central nervous system (CNS). However, the mechanisms that operate at the BCSFB to regulate the molecular traffic are still poorly understood. The taste signalling machinery, present in many extra-oral tissues, is involved in the chemical sensing of the composition of body fluids. We have identified this pathway in rat CP and hypothesised that it could also be present in the human BCSFB. In this study, we characterised the bitter taste receptors (TAS2Rs) expression profiling in human CP by combining data retrieved from available databases of the human CP transcriptome with its expression analysis in a human CP cell line and immunohistochemistry of human CP sections from men and women. TAS2R4, 5, 14 and 39 expression was confirmed in human CP tissue by immunohistochemistry and in HIBCPP cells by RT-PCR, immunofluorescence and Western blot. Moreover, the presence of downstream effector proteins GNAT3, PLCß2 and TRPM5 was also detected in HIBCPP cells. Then, we demonstrated that HIBCPP cells respond to chloramphenicol via TAS2R39 and to quercetin via TAS2R14. Our findings support an active role of TAS2Rs at the human BCSFB, as surveyors of the bloodstream and CSF compositions. These findings open new avenues for studies on the uptake of relevant compounds for targeted therapies of the CNS.


Assuntos
Barreira Hematoencefálica/metabolismo , Plexo Corióideo/metabolismo , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Receptores Acoplados a Proteínas G/genética , Paladar , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Líquido Cefalorraquidiano/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ratos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/sangue , Transdução de Sinais/genética
17.
Fluids Barriers CNS ; 17(1): 3, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32008573

RESUMO

BACKGROUND: The brain barriers establish compartments in the central nervous system (CNS) that significantly differ in their communication with the peripheral immune system. In this function they strictly control T-cell entry into the CNS. T cells can reach the CNS by either crossing the endothelial blood-brain barrier (BBB) or the epithelial blood-cerebrospinal fluid barrier (BCSFB) of the choroid plexus (ChP). OBJECTIVE: Analysis of the cellular and molecular mechanisms involved in the migration of different human CD4+ T-cell subsets across the BBB versus the BCSFB. METHODS: Human in vitro models of the BBB and BCSFB were employed to study the migration of circulating and CNS-entry experienced CD4+ T helper cell subsets (Th1, Th1*, Th2, Th17) across the BBB and BCSFB under inflammatory and non-inflammatory conditions in vitro. RESULTS: While under non-inflammatory conditions Th1* and Th1 cells preferentially crossed the BBB, under inflammatory conditions the migration rate of all Th subsets across the BBB was comparable. The migration of all Th subsets across the BCSFB from the same donor was 10- to 20-fold lower when compared to their migration across the BBB. Interestingly, Th17 cells preferentially crossed the BCSFB under both, non-inflamed and inflamed conditions. Barrier-crossing experienced Th cells sorted from CSF of MS patients showed migratory characteristics indistinguishable from those of circulating Th cells of healthy donors. All Th cell subsets could additionally cross the BCSFB from the CSF to ChP stroma side. T-cell migration across the BCSFB involved epithelial ICAM-1 irrespective of the direction of migration. CONCLUSIONS: Our observations underscore that different Th subsets may use different anatomical routes to enter the CNS during immune surveillance versus neuroinflammation with the BCSFB establishing a tighter barrier for T-cell entry into the CNS compared to the BBB. In addition, CNS-entry experienced Th cell subsets isolated from the CSF of MS patients do not show an increased ability to cross the brain barriers when compared to circulating Th cell subsets from healthy donors underscoring the active role of the brain barriers in controlling T-cell entry into the CNS. Also we identify ICAM-1 to mediate T cell migration across the BCSFB.


Assuntos
Barreira Hematoencefálica/imunologia , Linfócitos T CD4-Positivos/citologia , Células Epiteliais/citologia , Subpopulações de Linfócitos T/citologia , Transporte Biológico/imunologia , Movimento Celular/imunologia , Sistema Nervoso Central/imunologia , Plexo Corióideo/imunologia , Plexo Corióideo/fisiologia , Células Endoteliais/citologia , Humanos
18.
Front Immunol ; 11: 618544, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33574821

RESUMO

The role of B cells in multiple sclerosis (MS) is increasingly recognized. B cells undergo compartmentalized redistribution in blood and cerebrospinal fluid (CSF) during active MS, whereby memory B cells accumulate in the CSF. While B-cell trafficking across the blood-brain barrier has been intensely investigated, cellular diapedesis through the blood-CSF barrier (BCSFB) is incompletely understood. To investigate how B cells interact with the choroid plexus to transmigrate into the CSF we isolated circulating B cells from healthy donors (HC) and MS patients, utilized an inverted cell culture filter system of human choroid plexus papilloma (HIBCPP) cells to determine transmigration rates of B-cell subsets, immunofluorescence, and electron microscopy to analyze migration routes, and qRT-PCR to determine cytokines/chemokines mediating B-cell diapedesis. We also screened the transcriptome of intrathecal B cells from MS patients. We found, that spontaneous transmigration of HC- and MS-derived B cells was scant, yet increased significantly in response to B-cell specific chemokines CXCL-12/CXCL-13, was further boosted upon pre-activation and occurred via paracellular and transcellular pathways. Migrating cells exhibited upregulation of several genes involved in B-cell activation/migration and enhanced expression of chemokine receptors CXCR4/CXCR5, and were predominantly of isotype class switched memory phenotype. This antigen-experienced migratory subset displayed more pronounced chemotactic activities in MS than in HC and was retrieved in intrathecal B cells from patients with active MS. Trafficking of class-switched memory B cells was downscaled in a small cohort of natalizumab-exposed MS patients and the proportions of these phenotypes were reduced in peripheral blood yet were enriched intrathecally in patients who experienced recurrence of disease activity after withdrawal of natalizumab. Our findings highlight the relevance of the BCSFB as important gate for the entry of potentially harmful activated B cells into the CSF.


Assuntos
Subpopulações de Linfócitos B/imunologia , Barreira Hematoencefálica/imunologia , Quimiotaxia de Leucócito/imunologia , Plexo Corióideo/imunologia , Memória Imunológica/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Células Cultivadas , Feminino , Humanos , Masculino , Migração Transendotelial e Transepitelial/fisiologia
19.
J Neurosci Methods ; 329: 108478, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669338

RESUMO

Acute lymphoblastic leukaemia represents the most common paediatric malignancy. Although survival rates approach up to 90% in children, investigation of leukaemic infiltration into the central nervous system (CNS) is essential due to the presence of ongoing fatal complications. Recent in vitro studies mostly employed models of the blood-brain barrier (BBB), as endothelial cells of the microvasculature represent the largest surface between the blood stream and the brain parenchyma. However, crossing the blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus (CP) has been shown to be a general capability of leukaemic blasts. Hence, in vitro models of the BCSFB to study leukaemic transmigration may be of major importance to understand the development of CNS leukaemia. This review will summarise available in vitro models of the BCSFB employed to study the cellular interactions with leukaemic blasts during cancer cell transmigration into the brain compartment across primary or immortal/immortalised BCSFB cells. It will also provide an outlook on prospective improvements in BCSFB in vitro models by developing barrier-on-a-chip models and brain organoids.


Assuntos
Barreira Hematoencefálica/fisiologia , Linhagem Celular Tumoral , Líquido Cefalorraquidiano/fisiologia , Plexo Corióideo/fisiopatologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Cultura Primária de Células , Migração Transcelular de Célula/fisiologia , Animais , Humanos
20.
J Neuroinflammation ; 16(1): 232, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31752904

RESUMO

BACKGROUND: Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood-cerebrospinal fluid barrier (BCSFB) or the endothelial blood-brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. METHODS: In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. RESULTS: Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. CONCLUSION: Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.


Assuntos
Movimento Celular/imunologia , Plexo Corióideo/metabolismo , Plexo Corióideo/virologia , Infecções por Echovirus/imunologia , Linfócitos T/imunologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Humanos , Linfócitos T/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA