Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108275

RESUMO

In vertebrates, two homologous heterotetrameric AP1 complexes regulate the intracellular protein sorting via vesicles. AP-1 complexes are ubiquitously expressed and are composed of four different subunits: γ, ß1, µ1 and σ1. Two different complexes are present in eukaryotic cells, AP1G1 (contains γ1 subunit) and AP1G2 (contains γ2 subunit); both are indispensable for development. One additional tissue-specific isoform exists for µ1A, the polarized epithelial cells specific to µ1B; two additional tissue-specific isoforms exist for σ1A: σ1B and σ1C. Both AP1 complexes fulfil specific functions at the trans-Golgi network and endosomes. The use of different animal models demonstrated their crucial role in the development of multicellular organisms and the specification of neuronal and epithelial cells. Ap1g1 (γ1) knockout mice cease development at the blastocyst stage, while Ap1m1 (µ1A) knockouts cease during mid-organogenesis. A growing number of human diseases have been associated with mutations in genes encoding for the subunits of adaptor protein complexes. Recently, a new class of neurocutaneous and neurometabolic disorders affecting intracellular vesicular traffic have been referred to as adaptinopathies. To better understand the functional role of AP1G1 in adaptinopathies, we generated a zebrafish ap1g1 knockout using CRISPR/Cas9 genome editing. Zebrafish ap1g1 knockout embryos cease their development at the blastula stage. Interestingly, heterozygous females and males have reduced fertility and showed morphological alterations in the brain, gonads and intestinal epithelium. An analysis of mRNA profiles of different marker proteins and altered tissue morphologies revealed dysregulated cadherin-mediated cell adhesion. These data demonstrate that the zebrafish model organism enables us to study the molecular details of adaptinopathies and thus also develop treatment strategies.


Assuntos
Transtornos do Neurodesenvolvimento , Fator de Transcrição AP-1 , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Feminino , Humanos , Masculino , Camundongos , Endossomos/metabolismo , Células Epiteliais/metabolismo , Isoformas de Proteínas/metabolismo , Rede trans-Golgi/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Transtornos do Neurodesenvolvimento/genética , Fator de Transcrição AP-1/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
J Biol Chem ; 292(16): 6703-6714, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28235798

RESUMO

L-selectin regulates leukocyte adhesion and rolling along the endothelium. Proteins binding to the cytoplasmic tail of L-selectin regulate L-selectin functions. We used L-selectin cytoplasmic tail peptide pulldown assays combined with high sensitivity liquid chromatography/mass spectrometry to identify novel L-selectin tail-binding proteins. Incubation of the L-selectin tail with cell extracts from phorbol 12-myristate 13-acetate-stimulated Raw 264.7 macrophages resulted in the binding of µ1A of the clathrin-coated vesicle AP-1 complex. Furthermore, full-length GST-µ1A and the GST-µ1A C-terminal domain, but not the GST-µ1A N-terminal domain, bind to L-selectin tail peptide, and the intracellular pool of L-selectin colocalizes with AP-1 at the trans-Golgi network. We identified a novel basic protein motif consisting of a cluster of three dibasic residues (356RR357, 359KK360, and 362KK363) in the membrane-proximal domain of the L-selectin tail as well as a doublet of aspartic acid residues (369DD370) in the membrane-distal end of the L-selectin tail involved in µ1A binding. Stimulation of Raw 264.7 macrophages with PMA augmented the amount of µ1A associated with anti-L-selectin immunoprecipitates. However, full-length GST-µ1A did not bind to the phospho-L-selectin tail or phospho-mimetic S364D L-selectin tail. Accordingly, we propose that phosphorylation of µ1A is required for interaction with the L-selectin tail and that L-selectin tail phosphorylation may regulate this interaction in vivo Molecular docking of the L-selectin tail to µ1A was used to identify the µ1A surface domain binding the L-selectin tail and to explain how phosphorylation of the L-selectin tail abrogates µ1A interaction. Our findings indicate that L-selectin is transported constitutively by the AP-1 complex, leading to the formation of a trans-Golgi network reserve pool and that phosphorylation of the L-selectin tail blocks AP-1-dependent retrograde transport of L-selectin.


Assuntos
Complexo 1 de Proteínas Adaptadoras/química , Subunidades mu do Complexo de Proteínas Adaptadoras/química , Selectina L/química , Motivos de Aminoácidos , Animais , Ácido Aspártico/química , Cristalografia por Raios X , Citoplasma/metabolismo , Endotélio Vascular/metabolismo , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Macrófagos/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Monócitos/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Proteômica , Células RAW 264.7 , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina/química , Rede trans-Golgi/metabolismo
3.
Hum Mol Genet ; 25(17): 3836-3848, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27466194

RESUMO

Dominant or recessive mutations in the progressive ankylosis gene ANKH have been linked to familial chondrocalcinosis (CCAL2), craniometaphyseal dysplasia (CMD), mental retardation, deafness and ankylosis syndrome (MRDA). The function of the encoded membrane protein ANK in cellular compartments other than the plasma membrane is unknown. Here, we show that ANK localizes to the trans-Golgi network (TGN), clathrin-coated vesicles and the plasma membrane. ANK functionally interacts with clathrin and clathrin associated adaptor protein (AP) complexes as loss of either protein causes ANK dispersion from the TGN to cytoplasmic endosome-like puncta. Consistent with its subcellular localization, loss of ANK results in reduced formation of tubular membrane carriers from the TGN, perinuclear accumulation of early endosomes and impaired transferrin endocytosis. Our data indicate that clathrin/AP-mediated cycling of ANK between the TGN, endosomes, and the cell surface regulates membrane traffic at the TGN/endosomal interface. These findings suggest that dysfunction of Golgi-endosomal membrane traffic may contribute to ANKH-associated pathologies.


Assuntos
Membrana Celular/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Rede trans-Golgi/metabolismo , Clatrina/metabolismo , Endocitose , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HeLa , Humanos , Transferrina/metabolismo
4.
Curr Biol ; 23(21): 2185-90, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24206846

RESUMO

Endosomal membrane traffic serves crucial roles in cell physiology, signaling, and development. Sorting between endosomes and the trans-Golgi network (TGN) is regulated among other factors by the adaptor AP-1, an essential component of multicellular organisms. Membrane recruitment of AP-1 requires phosphatidylinositol 4-phosphate [PI(4)P], though the precise mechanisms and PI4 kinase isozyme (or isozymes) involved in generation of this PI(4)P pool remain unclear. The Wnt pathway is a major developmental signaling cascade and depends on endosomal sorting in Wnt-sending cells. Whether TGN/endosomal sorting modulates signaling downstream of Frizzled (Fz) receptors in Wnt-receiving cells is unknown. Here, we identify PI4-kinase type 2ß (PI4K2ß) as a regulator of TGN/endosomal sorting and Wnt signaling. PI4K2ß and AP-1 interact directly and are required for efficient sorting between endosomes and the TGN. Zebrafish embryos depleted of PI4K2ß or AP-1 lack pectoral fins due to defective Wnt signaling. Rescue experiments demonstrate requirements for PI4K2ß-AP-1 complex formation and PI4K2ß-mediated PI(4)P synthesis. Furthermore, PI4K2ß binds to the Fz-associated component Dishevelled (Dvl) and regulates endosomal recycling of Fz receptors and Wnt target gene expression. These data reveal an evolutionarily conserved role for PI4K2ß and AP-1 in coupling phosphoinositide metabolism to AP-1-mediated sorting and Wnt signaling.


Assuntos
Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fator de Transcrição AP-1/genética , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/genética , Animais , Linhagem Celular , Endossomos/metabolismo , Receptores Frizzled/metabolismo , Humanos , Camundongos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Transporte Proteico , Ratos , Fator de Transcrição AP-1/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo , Rede trans-Golgi/metabolismo
5.
Mol Biol Cell ; 18(8): 3193-203, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17538020

RESUMO

Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Vírus da Leucemia Murina/fisiologia , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , HIV-1/ultraestrutura , Células HeLa , Humanos , Camundongos , Mutação/genética , Ligação Proteica , Transporte Proteico , Ratos , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral
6.
Traffic ; 4(11): 802-11, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14617361

RESUMO

The mannose 6-phosphate receptor MPR46 mediates sorting of lysosomal enzymes and recycles between the trans-Golgi network and endosomes. We characterized the retrograde transport of MPR46 from endosomes to the TGN by an in vitro transport assay using mouse fibroblast cell lines. Sulfation of a modified MPR46 upon entering the TGN is measured. The in vitro retrograde transport is time-, temperature-, ATP- and cytosol-dependent. Transport requires the SNARE proteins Vti1a and Syntaxin 16 and the Rab family member Rab6. The transport is sensitive to GTP gamma S, brefeldin A and independent of TIP47. These data indicate that MPR46 follows an early endosome-to-TGN route. Transport is inhibited by MPR46 tail peptide comprising the acidic cluster-di-leucine sorting motif to which adaptor proteins AP-1 and AP-3 bind. Transport depends on cytosolic AP-3, but not on cytosolic AP-1. Residual membrane-associated AP-1 may have masked a requirement for cytosolic AP-1. The competence of membranes from AP-1-deficient cells for endosome-to-TGN transport in vitro was severely compromised.


Assuntos
Transporte Biológico/fisiologia , Endossomos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas da Gravidez , Receptor IGF Tipo 2/metabolismo , Rede trans-Golgi/metabolismo , Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 3 de Proteínas Adaptadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Brefeldina A/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Peptídeos/metabolismo , Perilipina-3 , Inibidores da Síntese de Proteínas/metabolismo , Transporte Proteico , Receptor IGF Tipo 2/genética , Temperatura , Proteínas de Transporte Vesicular
7.
EMBO Rep ; 3(5): 471-7, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11964383

RESUMO

The heterotetrameric AP-1A adaptor complex of clathrin-coated vesicles is ubiquitously expressed. The mu 1-adaptin subunit of the complex exists as the ubiquitous mu 1A and the polarized epithelia-specific mu 1B, which are 80% identical. In polarized epithelia, mu 1B is incorporated into the AP-1B complex, which is required for basolateral plasma membrane sorting of the low-density lipoprotein receptor. Binding of AP-1B to subdomains of the trans-Golgi network (TGN) appears to be part of the mechanism by which protein sorting is mediated. We expressed mu 1B in mu 1A-deficient fibroblasts to test for mu 1B function in non-polarized cells. AP-1B complexes were formed and bound to the TGN and to endosomes. Moreover, AP-1B restored the AP-1A-dependent sorting of mannose 6-phosphate receptors between endosomes and the TGN. This demonstrates that mu 1A and mu 1B do have overlapping sorting functions and indicates that AP-1A and AP-1B mediate protein sorting along parallel pathways between the TGN and endosomes in polarized epithelia.


Assuntos
Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Células Epiteliais/metabolismo , Fibroblastos/metabolismo , Rede trans-Golgi/metabolismo , Animais , Catepsina D , Polaridade Celular , Clatrina/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Camundongos , Ligação Proteica , Transporte Proteico , Receptor IGF Tipo 2/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo , Rede trans-Golgi/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA