Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
J Mol Diagn ; 26(3): 191-201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103590

RESUMO

Inherited bone marrow failure syndromes (IBMFS) are a group of heterogeneous disorders that account for ∼30% of pediatric cases of bone marrow failure and are often associated with developmental abnormalities and cancer predisposition. This article reports the laboratory validation and clinical utility of a large-scale, custom-designed next-generation sequencing panel, Children's Hospital of Philadelphia (CHOP) IBMFS panel, for the diagnosis of IBMFS in a cohort of pediatric patients. This panel demonstrated excellent analytic accuracy, with 100% sensitivity, ≥99.99% specificity, and 100% reproducibility on validation samples. In 269 patients with suspected IBMFS, this next-generation sequencing panel was used for identifying single-nucleotide variants, small insertions/deletions, and copy number variations in mosaic or nonmosaic status. Sixty-one pathogenic/likely pathogenic variants (54 single-nucleotide variants/insertions/deletions and 7 copy number variations) and 24 hypomorphic variants were identified, resulting in the molecular diagnosis of IBMFS in 21 cases (7.8%) and exclusion of IBMFS with a diagnosis of a blood disorder in 10 cases (3.7%). Secondary findings, including evidence of early hematologic malignancies and other hereditary cancer-predisposition syndromes, were observed in 9 cases (3.3%). The CHOP IBMFS panel was highly sensitive and specific, with a significant increase in the diagnostic yield of IBMFS. These findings suggest that next-generation sequencing-based panel testing should be a part of routine diagnostics in patients with suspected IBMFS.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Hemoglobinúria Paroxística , Humanos , Criança , Anemia Aplástica/diagnóstico , Anemia Aplástica/genética , Doenças da Medula Óssea/diagnóstico , Doenças da Medula Óssea/genética , Síndrome Congênita de Insuficiência da Medula Óssea , Variações do Número de Cópias de DNA/genética , Reprodutibilidade dos Testes , Hemoglobinúria Paroxística/diagnóstico , Hemoglobinúria Paroxística/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nucleotídeos
3.
Clin Lab Med ; 42(3): 423-434, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36150821

RESUMO

Because the clinical impact of cancer genomics is being increasingly recognized, tumor sequencing will likely continue to expand in breadth and scope. Therefore, it is vital for laboratory professionals to adopt the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists guidelines and create a standardized system of classification and nomenclature for somatic variants. Combining robust bioinformatics pipelines with thorough data analysis is necessary to efficiently and reproducibly identify and assess the impact of clinically relevant variants.


Assuntos
Testes Genéticos , Neoplasias , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Patologia Molecular
4.
Acta Neuropathol Commun ; 10(1): 102, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836290

RESUMO

CIC-rearranged sarcomas are newly defined undifferentiated soft tissue tumors with CIC-associated fusions, and dismal prognosis. CIC fusions activate PEA3 family genes, ETV1/4/5, leading to tumorigenesis and progression. We report two high-grade CNS sarcomas of unclear histological diagnosis and one disseminated tumor of unknown origin with novel fusions and similar gene-expression/methylation patterns without CIC rearrangement. All three patients were infants with aggressive diseases, and two experienced rapid disease deterioration and death. Whole-transcriptome sequencing identified an ATXN1-NUTM2A fusion in the two CNS tumors and an ATXN1L-NUTM2A fusion in case 3. ETV1/4/5 and WT1 overexpression were observed in all three cases. Methylation analyses predicted CIC-rearranged sarcoma for all cases. Retrospective IHC staining on case 2 demonstrated ETV4 and WT1 overexpression. ATXN1 and ATXN1L interact with CIC forming a transcription repressor complex. We propose that ATXN1/ATXN1L-associated fusions disrupt their interaction with CIC and decrease the transcription repressor complex, leading to downstream PEA3 family gene overexpression. These three cases with novel ATXN1/ATXN1L-associated fusions and features of CIC-rearranged sarcomas may further expand the scope of "CIC-rearranged" sarcomas to include non-CIC rearrangements. Additional cases are needed to demonstrate if ATXN1/ATXN1L-NUTM2A fusions are associated with younger age and more aggressive diseases.


Assuntos
Sarcoma de Células Pequenas , Sarcoma , Neoplasias de Tecidos Moles , Ataxina-1/genética , Biomarcadores Tumorais/genética , Expressão Gênica , Humanos , Lactente , Metilação , Proteínas de Fusão Oncogênica/genética , Proteínas Repressoras/genética , Estudos Retrospectivos , Sarcoma/genética , Sarcoma/patologia , Sarcoma de Células Pequenas/diagnóstico , Sarcoma de Células Pequenas/genética , Sarcoma de Células Pequenas/patologia , Neoplasias de Tecidos Moles/genética , Fatores de Transcrição/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-35232817

RESUMO

Li-Fraumeni syndrome (LFS) is one of the most common cancer predisposition syndromes that affects both children and adults. Individuals with LFS are at an increased risk of developing various types of cancer over their lifetime including soft tissue sarcomas, osteosarcomas, breast cancer, leukemia, brain tumors, and adrenocortical carcinoma. Heterozygous germline pathogenic variants in the tumor suppressor gene TP53 are the known causal genetic defect for LFS. Single-nucleotide variants (SNVs) including missense substitutions that occur in the highly conserved DNA binding domain of the protein are the most common alterations, followed by nonsense and splice site variants. Gross copy-number changes in TP53 are rare and account for <1% of all variants. Using next-generation sequencing (NGS) panels, we identified a paternally inherited germline intragenic duplication of TP53 in a child with metastatic osteosarcoma who later developed acute myeloid leukemia (AML). Transcriptome sequencing (RNA-seq) demonstrated the duplication was tandem, encompassing exons 2-6 and 28 nt of the untranslated region (UTR) upstream of the start codon in exon 2. The inclusion of the 28 nt is expected to result in a frameshift with a stop codon 18 codons downstream from the exon 6, leading to a loss-of-function allele. This case highlights the significance of simultaneous identification of both significant copy-number variants as well as SNVs/indels using NGS panels.


Assuntos
Neoplasias do Córtex Suprarrenal , Neoplasias da Mama , Síndrome de Li-Fraumeni , Proteína Supressora de Tumor p53 , Adulto , Neoplasias da Mama/genética , Criança , Feminino , Duplicação Gênica/genética , Predisposição Genética para Doença , Mutação em Linhagem Germinativa/genética , Humanos , Síndrome de Li-Fraumeni/genética , Proteína Supressora de Tumor p53/genética
6.
Ann Lab Med ; 41(1): 25-43, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829577

RESUMO

The rapid development of next-generation sequencing (NGS) technology, including advances in sequencing chemistry, sequencing technologies, bioinformatics, and data interpretation, has facilitated its wide clinical application in precision medicine. This review describes current sequencing technologies, including short- and long-read sequencing technologies, and highlights the clinical application of NGS in inherited diseases, oncology, and infectious diseases. We review NGS approaches and clinical diagnosis for constitutional disorders; summarize the application of U.S. Food and Drug Administration-approved NGS panels, cancer biomarkers, minimal residual disease, and liquid biopsy in clinical oncology; and consider epidemiological surveillance, identification of pathogens, and the importance of host microbiome in infectious diseases. Finally, we discuss the challenges and future perspectives of clinical NGS tests.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Medicina de Precisão , Biomarcadores Tumorais/genética , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/genética , Variações do Número de Cópias de DNA/genética , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
7.
Artigo em Inglês | MEDLINE | ID: mdl-32554798

RESUMO

PALB2 (partner and localizer of BRCA2) gene encodes a protein that colocalizes with BRCA2 in nuclear foci and likely permits the stable intranuclear localization and accumulation of BRCA2PALB2 plays a critical role in maintaining genome integrity through its role in the Fanconi anemia and homologous recombination DNA repair pathways. It has a known loss-of-function disease mechanism. Biallelic PALB2 pathogenic variants have been described in autosomal recessive Fanconi anemia. Heterozygous pathogenic variants in PALB2 are associated with increased risk for female and male breast cancer and pancreatic cancer (Science 324: 217; Cancer Res 71: 2222-2229; N Engl J Med 371: 497-506). Heterozygous germline PALB2 mutations have also been observed in patients with medulloblastoma (Lancet Oncol 19: 785-798). However, PALB2-related cancer predisposition to high-grade gliomas has not been reported. Here we report a germline PALB2 pathogenic variant (c.509_510delGA, p.Arg170Ilefs*14, NM_024675.3) found in a pediatric patient with high-grade glioma. This variant was first identified by tumor sequencing using the Children's Hospital of Philadelphia (CHOP) Comprehensive Solid Tumor Panel and then confirmed to be a germline change using the CHOP Comprehensive Hereditary Cancer Panel on DNA from a blood sample of this patient. Parental studies showed that this variant was paternally inherited. Further studies are needed to illustrate if pathogenic variants in PALB2 convey increased risk to developing brain tumor. This case also highlights the potential of identifying germline mutation through tumor sequencing.


Assuntos
Proteína do Grupo de Complementação N da Anemia de Fanconi/genética , Glioma/genética , Criança , Proteína do Grupo de Complementação N da Anemia de Fanconi/metabolismo , Feminino , Predisposição Genética para Doença , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/genética , Humanos
8.
J Org Chem ; 85(9): 6225-6232, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32268730

RESUMO

Unnatural amino acids are key building blocks in therapeutically relevant peptides. Thus, the development of novel methods to increase the structural diversity of the unnatural amino acid pool is needed. Herein, a photoredox-mediated decarboxylative radical conjugate addition to dehydroalanine derivatives is disclosed. Mild, robust, and general conditions were identified and applied to the diastereoselective synthesis of unnatural amino acids and the late-stage derivatization of a tripeptide.


Assuntos
Aminoácidos , Peptídeos , Aminas , Aminoácidos/química , Oxirredução , Peptídeos/química
9.
Am J Med Genet A ; 170A(5): 1288-94, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26854089

RESUMO

Thoracic aortic aneurysm (TAA) is a genetically heterogeneous disease involving subclinical and progressive dilation of the thoracic aorta, which can lead to life-threatening complications such as dissection or rupture. Genetic testing is important for risk stratification and identification of at risk family members, and clinically available genetic testing panels have been expanding rapidly. However, when past testing results are normal, there is little evidence to guide decision-making about the indications and timing to pursue additional clinical genetic testing. Results from research based genetic testing can help inform this process. Here we present 10 TAA patients who have a family history of disease and who enrolled in research-based exome testing. Nine of these ten patients had previous clinical genetic testing that did not identify the cause of disease. We sought to determine the number of rare variants in 23 known TAA associated genes identified by research-based exome testing. In total, we found 10 rare variants in six patients. Likely pathogenic variants included a TGFB2 variant in one patient and a SMAD3 variant in another. These variants have been reported previously in individuals with similar phenotypes. Variants of uncertain significance of particular interest included novel variants in MYLK and MFAP5, which were identified in a third patient. In total, clinically reportable rare variants were found in 6/10 (60%) patients, with at least 2/10 (20%) patients having likely pathogenic variants identified. These data indicate that consideration of re-testing is important in TAA patients with previous negative or inconclusive results.


Assuntos
Aneurisma da Aorta Torácica/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas Contráteis/genética , Glicoproteínas/genética , Síndrome de Loeys-Dietz/genética , Síndrome de Marfan/genética , Quinase de Cadeia Leve de Miosina/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta2/genética , Adolescente , Adulto , Idoso , Aneurisma da Aorta Torácica/fisiopatologia , Criança , Exoma/genética , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Síndrome de Loeys-Dietz/patologia , Masculino , Síndrome de Marfan/patologia , Pessoa de Meia-Idade , Mutação , Linhagem
10.
Protein Expr Purif ; 40(2): 396-403, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15766882

RESUMO

CD38 is a type II transmembrane glycoprotein found in myriad mammalian tissues and cell types. It is known for its involvement in the metabolism of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate, two nucleotides with calcium mobilizing activity independent of inositol trisphosphate. CD38 itself has been shown to have clinical significance in certain diseases with possible utilization in diagnostic and prognostic applications. Previous studies on several autoimmune diseases have shown the usefulness of recombinant CD38 protein expressed from Escherichia coli and Pichia pastoris in the detection of autoantibodies to CD38 via Western blot and ELISA. In this study, we produced a 6 x His-tagged GST-CD38 fusion protein using a recombinant baculovirus/insect cell expression technique that was purified as a soluble protein. The fusion protein was purified to homogeneity by affinity and gel filtration chromatography steps. It has an apparent molecular mass of 56 kDa on SDS-PAGE gel stained with Coomassie blue and was recognized on Western blots by antibodies against human CD38 as well as the polyhistidine tag. Peptide mass fingerprinting analysis confirmed the identity of human CD38 in the fusion protein.


Assuntos
ADP-Ribosil Ciclase/genética , Antígenos CD/genética , Clonagem Molecular/métodos , Glutationa Transferase/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , ADP-Ribosil Ciclase/imunologia , ADP-Ribosil Ciclase 1 , Animais , Afinidade de Anticorpos , Antígenos CD/imunologia , Baculoviridae , Linhagem Celular , DNA Complementar/genética , Histidina , Humanos , Insetos/citologia , Glicoproteínas de Membrana , Sondas Moleculares , Mapeamento de Peptídeos , Proteínas Recombinantes de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA