Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Sci Adv ; 10(14): eadh5543, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569031

RESUMO

Natural gas is the primary fuel used in U.S. residences, yet little is known about its consumption patterns and drivers. We use daily county-level gas consumption data to assess the spatial patterns of the relationships and the sensitivities of gas consumption to outdoor air temperature across U.S. households. We fitted linear-plus-plateau functions to daily gas consumption data in 1000 counties, and derived two key coefficients: the heating temperature threshold (Tcrit) and the gas consumption rate change per 1°C temperature drop (Slope). We identified the main predictors of Tcrit and Slope (like income, employment rate, and building type) using interpretable machine learning models built on census data. Finally, we estimated a potential 2.47 million MtCO2 annual emission reduction in U.S. residences by gas savings due to household insulation improvements and hypothetical behavioral change toward reduced consumption by adopting a 1°C lower Tcrit than the current value.

2.
Molecules ; 26(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064882

RESUMO

Paratuberculosis is an important disease of ruminants caused by Mycobacterium avium ssp. paratuberculosis (MAP). Early detection is crucial for successful infection control, but available diagnostic tests are still dissatisfying. Methods allowing a rapid, economic, and reliable identification of animals or herds affected by MAP are urgently required. This explorative study evaluated the potential of volatile organic compounds (VOCs) to discriminate between cattle with and without MAP infections. Headspaces above fecal samples and alveolar fractions of exhaled breath of 77 cows from eight farms with defined MAP status were analyzed in addition to stable air samples. VOCs were identified by GC-MS and quantified against reference substances. To discriminate MAP-positive from MAP-negative samples, VOC feature selection and random forest classification were performed. Classification models, generated for each biological specimen, were evaluated using repeated cross-validation. The robustness of the results was tested by predicting samples of two different sampling days. For MAP classification, the different biological matrices emitted diagnostically relevant VOCs of a unique but partly overlapping pattern (fecal headspace: 19, alveolar gas: 11, stable air: 4-5). Chemically, relevant compounds belonged to hydrocarbons, ketones, alcohols, furans, and aldehydes. Comparing the different biological specimens, VOC analysis in fecal headspace proved to be most reproducible, discriminatory, and highly predictive.


Assuntos
Ar , Fezes/química , Gases/análise , Odorantes/análise , Paratuberculose/diagnóstico , Alvéolos Pulmonares/metabolismo , Animais , Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculose/microbiologia , Curva ROC , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise
3.
J Breath Res ; 14(4): 046012, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021213

RESUMO

Breath analysis holds promise for non-invasive in vivo monitoring of disease related processes. However, physiological parameters may considerably affect profiles of exhaled volatile organic substances (VOCs). Volatile substances can be released via alveoli, bronchial mucosa or from the upper airways. The aim of this study was the systematic investigation of the influence of different sampling sites in the respiratory tract on VOC concentration profiles by means of a novel experimental setup. After ethical approval, breath samples were collected from 25 patients undergoing bronchoscopy for endobronchial ultrasound or bronchoscopic lung volume reduction from different sites in the airways. All patients had total intravenous anaesthesia under pressure-controlled ventilation. If necessary, respiratory parameters were adjusted to keep PETCO2 = 35-45 mm Hg. 30 ml gas were withdrawn at six sampling sites by means of gastight glass syringes: S1 = Room air, S2 = Inspiration, S3 = Endotracheal tube, S4 = Trachea, S5 = Right B6 segment, S6 = Left B6 segment (S4-S6 through the bronchoscope channel). 10 ml were used for VOC analysis, 20 ml for PCO2 determination. Samples were preconcentrated by solid-phase micro-extraction (SPME) and analysed by gas chromatography-mass spectrometry (GC-MS). PCO2 was determined in a conventional blood gas analyser. Statistically significant differences in substance concentrations for acetone, isoprene, 2-methyl-pentane and n-hexane could be observed between different sampling sites. Increasing substance concentrations were determined for acetone (15.3%), 2-methyl-pentane (11.4%) and n-hexane (19.3%) when passing from distal to proximal sampling sites. In contrast, isoprene concentrations decreased by 9.9% from proximal to more distal sampling sites. Blank bronchoscope measurements did not show any contaminations. Increased substance concentrations in the proximal respiratory tract may be explained through substance excretion from bronchial mucosa while decreased concentrations could result from absorption or reaction processes. Spatial mapping of VOC profiles can provide novel insights into substance specific exhalation kinetics and mechanisms.


Assuntos
Testes Respiratórios/métodos , Broncoscopia , Expiração , Manejo de Espécimes , Compostos Orgânicos Voláteis/análise , Dióxido de Carbono/química , Feminino , Humanos , Limite de Detecção , Pulmão/química , Masculino , Pessoa de Meia-Idade , Pressão Parcial
4.
Sci Rep ; 9(1): 18894, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827195

RESUMO

Influenza A is a serious pathogen itself, but often leads to dangerous co-infections in combination with bacterial species such as Streptococcus pyogenes. In comparison to classical biochemical methods, analysis of volatile organic compounds (VOCs) in headspace above cultures can enable destruction free monitoring of metabolic processes in vitro. Thus, volatile biomarkers emitted from biological cell cultures and pathogens could serve for monitoring of infection processes in vitro. In this study we analysed VOCs from headspace above (co)-infected human cells by using a customized sampling system. For investigating the influenza A mono-infection and the viral-bacterial co-infection in vitro, we analysed VOCs from Detroit cells inoculated with influenza A virus and S. pyogenes by means of needle-trap micro-extraction (NTME) and gas chromatography mass spectrometry (GC-MS). Besides the determination of microbiological data such as cell count, cytokines, virus load and bacterial load, emissions from cell medium, uninfected cells and bacteria mono-infected cells were analysed. Significant differences in emitted VOC concentrations were identified between non-infected and infected cells. After inoculation with S. pyogenes, bacterial infection was mirrored by increased emissions of acetaldehyde and propanal. N-propyl acetate was linked to viral infection. Non-destructive monitoring of infections by means of VOC analysis may open a new window for infection research and clinical applications. VOC analysis could enable early recognition of pathogen presence and in-depth understanding of their etiopathology.


Assuntos
Vírus da Influenza A , Influenza Humana/metabolismo , Odorantes/análise , Infecções Estreptocócicas/metabolismo , Streptococcus pyogenes , Compostos Orgânicos Voláteis/análise , Linhagem Celular Tumoral , Coinfecção , Cromatografia Gasosa-Espectrometria de Massas , Humanos
5.
Cells ; 8(7)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295931

RESUMO

Metabolic characterization of human adipose tissue-derived mesenchymal stromal/stem cells (ASCs) is of importance in stem cell research. The monitoring of the cell status often requires cell destruction. An analysis of volatile organic compounds (VOCs) in the headspace above cell cultures might be a noninvasive and nondestructive alternative to in vitro analysis. Furthermore, VOC analyses permit new insight into cellular metabolism due to their view on volatile compounds. Therefore, the aim of our study was to compare VOC profiles in the headspace above nondifferentiating and adipogenically differentiating ASCs. To this end, ASCs were cultivated under nondifferentiating and adipogenically differentiating conditions for up to 21 days. At different time points the headspace samples were preconcentrated by needle trap micro extraction and analyzed by gas chromatography/mass spectrometry. Adipogenic differentiation was assessed at equivalent time points. Altogether the emissions of 11 VOCs showed relevant changes and were analyzed in more detail. A few of these VOCs, among them acetaldehyde, were significantly different in the headspace of adipogenically differentiating ASCs and appeared to be linked to metabolic processes. Furthermore, our data indicate that VOC headspace analysis might be a suitable, noninvasive tool for the metabolic monitoring of (mesenchymal stem) cells in vitro.


Assuntos
Tecido Adiposo/química , Células-Tronco Mesenquimais/química , Compostos Orgânicos Voláteis/química , Tecido Adiposo/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Compostos Orgânicos Voláteis/análise
6.
Sci Rep ; 8(1): 10838, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022081

RESUMO

Natural menstrual cycle and/or oral contraception diversely affect women metabolites. Longitudinal metabolic profiling under constant experimental conditions is thereby realistic to understand such effects. Thus, we investigated volatile organic compounds (VOCs) exhalation throughout menstrual cycles in 24 young and healthy women with- and without oral contraception. Exhaled VOCs were identified and quantified in trace concentrations via high-resolution real-time mass-spectrometry, starting from a menstruation and then repeated follow-up with six intervals including the next bleeding. Repeated measurements within biologically comparable groups were employed under optimized measurement setup. We observed pronounced and substance specific changes in exhaled VOC concentrations throughout all cycles with low intra-individual variations. Certain blood-borne volatiles changed significantly during follicular and luteal phases. Most prominent changes in endogenous VOCs were observed at the ovulation phase with respect to initial menstruation. Here, the absolute median abundances of alveolar ammonia, acetone, isoprene and dimethyl sulphide changed significantly (P-value ≤ 0.005) by 18.22↓, 13.41↓, 18.02↑ and 9.40↓%, respectively. These VOCs behaved in contrast under the presence of combined oral contraception; e.g. isoprene decreased significantly by 30.25↓%. All changes returned to initial range once the second bleeding phase was repeated. Changes in exogenous benzene, isopropanol, limonene etc. and smoking related furan, acetonitrile and orally originated hydrogen sulphide were rather nonspecific and mainly exposure dependent. Our observations could apprehend a number of known/pre-investigated metabolic effects induced by monthly endocrine regulations. Potential in vivo origins (e.g. metabolic processes) of VOCs are crucial to realize such effects. Despite ubiquitous confounders, we demonstrated the true strength of volatolomics for metabolic monitoring of menstrual cycle and contraceptives. These outcomes may warrant further studies in this direction to enhance our fundamental and clinical understanding on menstrual metabolomics and endocrinology. Counter-effects of contraception can be deployed for future noninvasive assessment of birth control pills. Our findings could be translated toward metabolomics of pregnancy, menopause and post-menopausal complications via breath analysis.


Assuntos
Anticoncepção/métodos , Anticoncepcionais Orais/administração & dosagem , Expiração/fisiologia , Menstruação/fisiologia , Compostos Orgânicos Voláteis/análise , Adolescente , Adulto , Testes Respiratórios , Feminino , Humanos , Pessoa de Meia-Idade , Fenômenos Fisiológicos Respiratórios , Adulto Jovem
7.
Ann Vasc Surg ; 49: 191-205, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29518504

RESUMO

BACKGROUND: Paraplegia due to spinal cord ischemia (SCI) is a serious complication after repair of thoracoabdominal aortic aneurysms. For prevention and early treatment of spinal ischemia, intraoperative monitoring of spinal cord integrity is essential. This study was intended to improve recognition of SCI through a combination of transcranial motor-evoked potentials (tc-MEPs), serum markers, and innovative breath analysis. METHODS: In 9 female German Landrace pigs, tc-MEPs were captured, markers of neuronal damage were determined in blood, and volatile organic compounds (VOCs) were analyzed in exhaled air. After thoraco-phrenico-laparotomy, SCI was initiated through sequential clamping (n = 4) or permanently ligating (n = 5) SAs of the abdominal and thoracic aorta in caudocranial orientation until a drop in the tc-MEPs to at least 25% of the baseline was recorded. VOCs in breath were determined by means of solid-phase microextraction coupled with gas chromatography-mass spectrometry. After waking up, clinical and neurological status was evaluated (Tarlov score). Spinal cord histology was obtained in postmortem. RESULTS: Permanent vessel ligature induced a worse neurological outcome and a higher number of necrotic motor neurons compared to clamping. Changes of serum markers remained unspecific. After laparotomy, exhaled acetone and isopropanol showed highest concentrations, and pentane and hexane increased during ischemia-reperfusion injury. CONCLUSIONS: To mimic spinal ischemia occurring in humans during aortic aneurysm repair, animal models have to be meticulously evaluated concerning vascular anatomy and function. Volatiles from breath indicated metabolic stress during surgery and oxidative damage through ischemia reperfusion. Breath VOCs may provide complimentary information to conventional monitoring methods.


Assuntos
Aorta Abdominal/cirurgia , Aorta Torácica/cirurgia , Biomarcadores/sangue , Testes Respiratórios/métodos , Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória/métodos , Isquemia do Cordão Espinal/diagnóstico , Compostos Orgânicos Voláteis/metabolismo , Animais , Constrição , Modelos Animais de Doenças , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Ligadura , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Estresse Oxidativo , Valor Preditivo dos Testes , Microextração em Fase Sólida , Isquemia do Cordão Espinal/sangue , Isquemia do Cordão Espinal/etiologia , Isquemia do Cordão Espinal/fisiopatologia , Sus scrofa , Fatores de Tempo
8.
J Breath Res ; 12(2): 026016, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29199640

RESUMO

Proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) represents an attractive tool for the real-time analysis of VOC profiles in human breath. Quantification of breath VOCs by means of direct MS may be affected by the matrix, as human breath not only contains several hundred VOCs at the ppbV-pptV level, but is water saturated and contains percentage levels of CO2. Investigation of breath biomarkers in clinical studies requires quantitative and comparable results. We therefore systematically assessed the effect of humidity, CO2 and O2 on the results of PTR-MS analysis. We investigated more than 20 VOCs, including aldehydes, ketones, aromatic compounds and hydrocarbons with different sample humidity, CO2 and O2 content. The influence of data processing (e.g. normalization to the H3O+ ion count) was also addressed. An increase of the H3O+ count of about 20% was observed when the humidity in the sample was increased to breath levels. Large differences regarding the measured VOC intensities were found between the dry and humid samples. Data normalization to the H3O+ or water-clusters could not fully compensate for the humidity-dependent effects. However, as the determination of most VOCs linearly depends on the humidity over the whole investigated range, factor-based correction seems possible. The effects of CO2 were more pronounced in the dry samples than in the humid samples but only had a minor influence on the results. The same was true for the influence of O2. For the reliable quantification of VOCs in clinical studies and for the standardization of VOC research, well-adapted calibration standards are required for PTR-MS analysis.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Dióxido de Carbono/análise , Umidade , Espectrometria de Massas/métodos , Oxigênio/análise , Prótons , Calibragem , Expiração , Humanos , Padrões de Referência , Respiração Artificial , Fumar/efeitos adversos , Temperatura , Compostos Orgânicos Voláteis/análise , Água
9.
BMC Cardiovasc Disord ; 17(1): 85, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28320316

RESUMO

BACKGROUND: The aim of this study was to compare treatment of moderate to severe symptomatic mitral regurgitation (MR) with either conventional surgery or the mitral valve edge-to-edge device (MitraClip®) in very elderly patients. The newly introduced MitraClip device has demonstrated promising acute results in treating this patient cohort. Also noteworthy is the fact that patients who otherwise would have been denied surgery are increasingly referred for treatment with the MitraClip device. We sought to review our institutional experience, comparing outcomes in both surgical and MitraClip arms of treatment in the elderly population with symptomatic MR. METHODS: From October 2008 through October 2014, 136 consecutive patients aged ≥ 80 with moderate to severe symptomatic MR were scheduled for either conventional surgery or MitraClip intervention. 56 patients ≥ 80 were operated for symptomatic MR and 80 patients ≥ 80 were treated with the mitraClip device. Patients suitable for this study were identified from our hospital database. Patients ≥80 with moderate/severe symptomatic MR treated with either conventional surgery or the MitraClip device were eligible for our analysis. We compared the surgical patient cohort with the mitraClip patient cohort after eliminating patients that did not meet our inclusion criteria. Forty-two patients were identified from the conventional cohort who were then compared with 42 patients from the mitraClip cohort. Forty-two patients (50%) underwent mitral valve repair or replacement (40.5% functional MR, 59.5% organic/mixed MR) and 42 patients (50%) underwent MitraClip intervention (50% functional MR, 50% organic/mixed MR). Associated procedures in the conventional surgical group were myocardial revascularization 38%, pulmonary vein ablation 23.8%, left atrial appendage resection 52.4% and PFO occlusion 11.9%. RESULTS: Patients who underwent MitraClip treatment were though slightly older but the differences did not attain statistical significance (mean, 82.2 ± 1.65 vs 81.7 ± 1.35 years, p = 0,100), had lower LVEF (mean, 47.6 ± 14.2 vs 53.4 ± 14.3, p = 0.072), lower logistic EuroScore II (mean, 11.3 ± 5.63 vs 12.1 ± 10.6, p = 0.655) but higher STS risk score (mean, 11.8 ± 6.7 vs 8.1 ± 5.6, p = 0.008) respectively compared to surgical patients. Procedural success was 100% vs 96% in surgery and MitraClip groups respectively. Thirty -day mortality was 7.1% vs 4.8% (p = 1.000) in surgery and MitraClip group respectively. Residual postoperative MR ≥2 at discharge was present in none of the patients treated surgically, whereas this was the case in 10 (23.8%) patients treated with the MitraClip device. At 1 year a cumulative number of four (9.52%) patients died in the surgical group vs 9 (21.4%) patients who died in the MitraClip group. CONCLUSIONS: Elderly patients presenting with moderate to severe symptomatic MR may either be treated by conventional surgery or with the MitraClip device with acceptable acute outcomes. The decision for treatment with the MitraClip device should not depend on age alone rather on cumulative risk of conventional surgery. Concomitant cardiac pathologies, often times treated simultaneously during surgery for symptomatic MR may be omitted, if patients are scheduled outright to MitraClip treatment. The effect of concomitant cardiac pathologies left untreated at the time of interventional mitral valve repair on outcome after MitraClip therapy remain widely unknown.


Assuntos
Implante de Prótese de Valva Cardíaca/instrumentação , Próteses Valvulares Cardíacas , Anuloplastia da Valva Mitral/instrumentação , Insuficiência da Valva Mitral/cirurgia , Valva Mitral/cirurgia , Idoso de 80 Anos ou mais , Feminino , Alemanha , Implante de Prótese de Valva Cardíaca/efeitos adversos , Hemodinâmica , Humanos , Estimativa de Kaplan-Meier , Masculino , Valva Mitral/diagnóstico por imagem , Valva Mitral/fisiopatologia , Anuloplastia da Valva Mitral/efeitos adversos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/fisiopatologia , Seleção de Pacientes , Modelos de Riscos Proporcionais , Desenho de Prótese , Recuperação de Função Fisiológica , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Volume Sistólico , Fatores de Tempo , Resultado do Tratamento , Função Ventricular Esquerda
10.
J Breath Res ; 11(1): 016005, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28068288

RESUMO

Analysis of exhaled VOCs can provide information on physiology, metabolic processes, oxidative stress and lung diseases. In critically ill patients, VOC analysis may be used to gain complimentary information beyond global clinical parameters. This seems especially attractive in mechanically ventilated patients frequently suffering from impairment of gas exchange. This study was intended to assess (a) the effects of recruitment maneuvers onto VOC profiles, (b) the correlations between electrical impedance tomography (EIT) data and VOC profiles and (c) the effects of recruitment onto distribution of ventilation. Eleven mechanically ventilated patients were investigated during lung recruitment after cardiac surgery. Continuous breath gas analysis by means of PTR-ToF-MS, EIT and blood gas analyses were performed simultaneously. More than 300 mass traces could be detected and monitored continuously by means of PTR-ToF-MS in every patient. Exhaled VOC concentrations varied with recruitment induced changes in minute ventilation and cardiac output. Ammonia exhalation depended on blood pH. The improvement in dorsal lung ventilation during recruitment ranged from 9% to 110%. Correlations between exhaled concentrations of acetone, isoprene, benzene sevoflurane and improvement in regional ventilation during recruitment were observed. Extent and quality of these correlations depended on physico-chemical properties of the VOCs. Combination of continuous real-time breath analysis and EIT revealed correlations between exhaled VOC concentrations and distribution of ventilation. This setup enabled immediate recognition of physiological and therapeutic effects in ICU patients. In a perspective, VOC analysis could be used for non-invasive control and optimization of ventilation strategies.


Assuntos
Testes Respiratórios/métodos , Impedância Elétrica , Expiração , Respiração Artificial , Tomografia/métodos , Compostos Orgânicos Voláteis/análise , Amônia/análise , Gasometria , Butadienos/análise , Débito Cardíaco , Feminino , Hemiterpenos/análise , Humanos , Concentração de Íons de Hidrogênio , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Pentanos/análise , Fatores de Tempo
11.
J Breath Res ; 10(3): 037103, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27604146

RESUMO

Mycobacterium avium ssp. paratuberculosis (MAP) causes chronic granulomatous enteritis in ruminants. Bacterial growth is still the diagnostic 'gold standard', but is very time consuming. MAP-specific volatile organic compounds (VOCs) above media could accelerate cultural diagnosis. The aim of this project was to assess the kinetics of a VOC profile linked to the growth of MAP in vitro. The following sources of variability were taken into account: five different culture media, three different MAP strains, inoculation with different bacterial counts, and different periods of incubation. Needle-trap microextraction was employed for pre-concentration of VOCs, and gas chromatography-mass spectrometry for subsequent analysis. All volatiles were identified and calibrated by analysing pure references at different concentration levels. More than 100 VOCs were measured in headspaces above MAP-inoculated and control slants. Results confirmed different VOC profiles above different culture media. Emissions could be assigned to either egg-containing media or synthetic ingredients. 43 VOCs were identified as potential biomarkers of MAP growth on Herrold's Egg Yolk Medium without significant differences between the tree MAP strains. Substances belonged to the classes of alcohols, aldehydes, esters, ketones, aliphatic and aromatic hydrocarbons. With increasing bacterial density the VOC concentrations above MAP expressed different patterns: the majority of substances increased (although a few decreased after reaching a peak), but nine VOCs clearly decreased. Data support the hypotheses that (i) bacteria emit different metabolites on different culture media; (ii) different MAP strains show uniform VOC patterns; and (iii) cultural diagnosis can be accelerated by taking specific VOC profiles into account.


Assuntos
Técnicas de Cultura de Células/métodos , Mycobacterium avium subsp. paratuberculosis/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/análise , Análise de Variância , Animais , Biomarcadores/análise , Contagem de Colônia Microbiana , Meios de Cultura/química , Cromatografia Gasosa-Espectrometria de Massas , Cinética
12.
Anal Chem ; 87(3): 1773-81, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25517186

RESUMO

A fast detection method to analyze gaseous organic compounds in complex gas mixtures was developed, using a needle trap device (NTD) in conjunction with thermal-desorption photoionization time-of-flight mass spectrometry (TD-PI-TOFMS). The mass spectrometer was coupled via a deactivated fused silica capillary to an injector of a gas chromatograph. In the hot injector, the analytes collected on the NTD were thermally desorbed and directly transferred to the PI-TOFMS ion source. The molecules are softly ionized either by single photon ionization (SPI, 118 nm) or by resonance enhanced multiphoton ionization (REMPI, 266 nm), and the molecular ion signals are detected in the TOF mass analyzer. Analyte desorption and the subsequent PI-TOFMS detection step only lasts ten seconds. The specific selectivity of REMPI (i.e., aromatic compounds) and universal ionization characteristics render PI-MS as a promising detection system. As a first demonstrative application, the alveolar phase breath gas of healthy, nonsmoking subjects was sampled on NTDs. While smaller organic compounds such as acetone, acetaldehyde, isoprene, or cysteamine can be detected in the breath gas with SPI, REMPI depicts the aromatic substances phenol and indole at 266 nm. In the breath gas of a healthy, smoking male subject, several xenobiotic substances such as benzene, toluene, styrene, and ethylbenzene can be found as well. Furthermore, the NTD-REMPI-TOFMS setup was tested for breath gas taken from a mechanically ventilated pig under continuous intravenous propofol (2,6-diisopropylphenol, narcotic drug) infusion.


Assuntos
Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Fótons , Propofol/análise , Xenobióticos/análise , Animais , Cromatografia Gasosa/métodos , Voluntários Saudáveis , Humanos , Hipnóticos e Sedativos/análise , Masculino , Pessoa de Meia-Idade , Agulhas , Suínos
13.
Artigo em Inglês | MEDLINE | ID: mdl-25014347

RESUMO

Breath analysis is a young field of research with great clinical potential. As a result of this interest, researchers have developed new analytical techniques that permit real-time analysis of exhaled breath with breath-to-breath resolution in addition to the conventional central laboratory methods using gas chromatography-mass spectrometry. Breath tests are based on endogenously produced volatiles, metabolites of ingested precursors, metabolites produced by bacteria in the gut or the airways, or volatiles appearing after environmental exposure. The composition of exhaled breath may contain valuable information for patients presenting with asthma, renal and liver diseases, lung cancer, chronic obstructive pulmonary disease, inflammatory lung disease, or metabolic disorders. In addition, oxidative stress status may be monitored via volatile products of lipid peroxidation. Measurement of enzyme activity provides phenotypic information important in personalized medicine, whereas breath measurements provide insight into perturbations of the human exposome and can be interpreted as preclinical signals of adverse outcome pathways.


Assuntos
Biomarcadores/análise , Testes Respiratórios/métodos , Testes Diagnósticos de Rotina/métodos , Doença , Expiração/fisiologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos
14.
J Breath Res ; 8(3): 034001, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24946087

RESUMO

Breath analysis is a young field of research with its roots in antiquity. Antoine Lavoisier discovered carbon dioxide in exhaled breath during the period 1777-1783, Wilhelm (Vilém) Petters discovered acetone in breath in 1857 and Johannes Müller reported the first quantitative measurements of acetone in 1898. A recent review reported 1765 volatile compounds appearing in exhaled breath, skin emanations, urine, saliva, human breast milk, blood and feces. For a large number of compounds, real-time analysis of exhaled breath or skin emanations has been performed, e.g., during exertion of effort on a stationary bicycle or during sleep. Volatile compounds in exhaled breath, which record historical exposure, are called the 'exposome'. Changes in biogenic volatile organic compound concentrations can be used to mirror metabolic or (patho)physiological processes in the whole body or blood concentrations of drugs (e.g. propofol) in clinical settings-even during artificial ventilation or during surgery. Also compounds released by bacterial strains like Pseudomonas aeruginosa or Streptococcus pneumonia could be very interesting. Methyl methacrylate (CAS 80-62-6), for example, was observed in the headspace of Streptococcus pneumonia in concentrations up to 1420 ppb. Fecal volatiles have been implicated in differentiating certain infectious bowel diseases such as Clostridium difficile, Campylobacter, Salmonella and Cholera. They have also been used to differentiate other non-infectious conditions such as irritable bowel syndrome and inflammatory bowel disease. In addition, alterations in urine volatiles have been used to detect urinary tract infections, bladder, prostate and other cancers. Peroxidation of lipids and other biomolecules by reactive oxygen species produce volatile compounds like ethane and 1-pentane. Noninvasive detection and therapeutic monitoring of oxidative stress would be highly desirable in autoimmunological, neurological, inflammatory diseases and cancer, but also during surgery and in intensive care units. The investigation of cell cultures opens up new possibilities for elucidation of the biochemical background of volatile compounds. In future studies, combined investigations of a particular compound with regard to human matrices such as breath, urine, saliva and cell culture investigations will lead to novel scientific progress in the field.


Assuntos
Testes Respiratórios/métodos , Expiração , Fezes/química , Saliva/química , Pele/química , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/urina , Humanos
15.
Eur J Cardiothorac Surg ; 46(1): 55-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24321993

RESUMO

OBJECTIVES: Percutaneous edge-to-edge devices for non-surgical repair of mitral valve regurgitation are under clinical evaluation in high-risk patients deemed not suitable for conventional surgery. To address guidelines for initial therapy decision, we here report on 13 cases of surgery after failed percutaneous edge-to-edge mitral valve repair or attempted repair, and discuss methodology and prognostic factors for operative outcome in this high-risk situation. METHODS: Thirteen patients referred to our cardiothoracic unit after failed percutaneous mitral valve repair or attempted repair using the edge-to-edge technique, were treated surgically for mitral valve failure between June 2010 and December 2012. Pathology of mitral valve before and after interventional mitral valve repair (especially prevalent mode of failure) was evaluated and classified for each individual patient by echocardiography and intraoperative direct visualization. Number of implanted edge-to-edge devices were identified. Preoperative risk scores were matched with intraoperative observations and histopathological findings of valve tissue. Postoperative morbidity and mortality were analysed with respect to mitral valve and patient-related data. RESULTS: Three of 10 patients were referred with severe mitral valve regurgitation/stenosis after initially successful percutaneous edge-to-edge therapy or attempted therapy. In 3 patients, ≥ 2 edge-to-edge devices were implanted leading to very tight edge-to-edge leaflet connection and fibrosis. All patients underwent successful surgical mitral valve replacement and concomitant complete cardiac surgery (CABG, aortic or tricuspid valve surgery, ASD closure and pulmonary vein isolation for atrial fibrillation). The likelihood of repair was reduced with respect to multiple edge-to-edge technology. One device could not be harvested surgically because of embolization. One patient died on the second postoperative day due to sepsis with multiple organ failure. The remaining 12 patients were discharged with excellent valve prosthesis function and followed up to 2 years post-surgery. The current long-term survival rate is 77%. CONCLUSION: Our series demonstrate that highest risk patients can survive mitral valve surgery after failed multiple edge-to-edge interventional mitral valve repair. As long-term results of the MitraClip therapy are pending, we recommend close meshed follow-up of patients treated with the MitraClip device, especially within the first year of the index procedure as delays in salvage management, interventional or surgical, when the index procedure fails may increase morbidity and mortality.


Assuntos
Implante de Prótese de Valva Cardíaca , Valva Mitral/cirurgia , Terapia de Salvação , Técnicas de Sutura/instrumentação , Idoso , Ecocardiografia , Feminino , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Insuficiência da Valva Mitral/mortalidade , Insuficiência da Valva Mitral/cirurgia , Estenose da Valva Mitral/mortalidade , Estenose da Valva Mitral/cirurgia , Qualidade de Vida , Reoperação , Falha de Tratamento
16.
Anal Chem ; 85(21): 10321-9, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24044609

RESUMO

Analysis of volatile organic compounds (VOCs) in breath holds great promise for noninvasive diagnostic applications. However, concentrations of VOCs in breath may change quickly, and actual and previous uptakes of exogenous substances, especially in the clinical environment, represent crucial issues. We therefore adapted proton-transfer-reaction-time-of-flight-mass spectrometry for real time breath analysis in the clinical environment. For reasons of medical safety, a 6 m long heated silcosteel transfer line connected to a sterile mouth piece was used for breath sampling from spontaneously breathing volunteers and mechanically ventilated patients. A time resolution of 200 ms was applied. Breath from mechanically ventilated patients was analyzed immediately after cardiac surgery. Breath from 32 members of staff was analyzed in the post anesthetic care unit (PACU). In parallel, room air was measured continuously over 7 days. Detection limits for breath-resolved real time measurements were in the high pptV/low ppbV range. Assignment of signals to alveolar or inspiratory phases was done automatically by a matlab-based algorithm. Quickly and abruptly occurring changes of patients' clinical status could be monitored in terms of breath-to-breath variations of VOC (e.g. isoprene) concentrations. In the PACU, room air concentrations mirrored occupancy. Exhaled concentrations of sevoflurane strongly depended on background concentrations in all participants. In combination with an optimized inlet system, the high time and mass resolution of PTR-ToF-MS provides optimal conditions to trace quick changes of breath VOC profiles and to assess effects from the clinical environment.


Assuntos
Testes Respiratórios/métodos , Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Algoritmos , Humanos , Limite de Detecção , Prótons
17.
Appl Spectrosc ; 67(8): 860-72, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23876725

RESUMO

The photoionization properties of the pharmaceutically relevant substances amantadine, diazepam, dimethyltryptamine, etomidate, ketamine, mescaline, methadone, and propofol were determined. At beamline U125/2-10m-NIM of the BESSY II synchrotron facility (Berlin, Germany) vacuum ultraviolet (VUV) photoionization spectra were recorded in the energy range 7.1 to 11.9 eV (174.6 to 104.2 nm), showing the hitherto unknown ionization energies and fragmentation appearance energies of the compounds under investigation. Furthermore, (1+1)-resonance-enhanced multiphoton ionization (REMPI) spectra of selected compounds (amantadine, diazepam, etomidate, ketamine, and propofol) were recorded by a continuous scan in the energy range between 3.6 and 5.7 eV (345 to 218 nm) using a tunable optical parametric oscillator (spectral resolution: 0.1 nm) laser system. The resulting REMPI wavelength spectra of these compounds are discussed and put into context with already known UV absorption data. Time-of-flight mass spectrometry was used for ion detection in both experiments. Finally, the implications of the obtained physical-chemical results for potential analytical applications are discussed. In this context, fast detection approaches for the considered compounds from breath gas using photoionization mass spectrometry and a rapid pre-concentration step (e.g., needle trap device) are of interest.


Assuntos
Preparações Farmacêuticas/análise , Processos Fotoquímicos , Fótons , Espectrometria de Massas por Ionização por Electrospray/métodos , Análise Espectral/métodos , Síncrotrons , Humanos
18.
Eur Respir J ; 40(3): 706-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22267752

RESUMO

Noninvasive breath analysis may provide valuable information for cancer recognition if disease-specific volatile biomarkers could be identified. In order to compare nondiseased and diseased tissue in vivo, this study took advantage of the special circumstances of one-lung ventilation (OLV) during lung-surgery. 15 cancer patients undergoing lung resection with OLV were enrolled. From each patient, alveolar breath samples were taken separately from healthy and diseased lungs before and after tumour resection. Volatile substances were pre-concentrated by means of solid-phase microextraction, and were separated, identified and quantified by means of gas chromatography-mass spectrometry. Different classes of volatile substances could be identified according to their concentration profiles. Due to prolonged fasting and activation of lipolysis, concentrations of endogenous acetone significantly increased during surgery. Exogenous substances, such as benzene or cyclohexanone, showed typical washout exhalation kinetics. Exhaled concentrations of potentially tumour associated substances, such as butane or pentane, were different for nondiseased and diseased lungs and decreased significantly after surgery. Separate analysis of volatile substances exhaled from healthy and diseased lungs in the same patient, together with thorough consideration of substance origins and exhalation kinetics offers unique opportunities of biomarker recognition and evaluation.


Assuntos
Neoplasias Pulmonares/diagnóstico , Ventilação Monopulmonar , Acetona/análise , Idoso , Benzeno/análise , Biomarcadores Tumorais/análise , Testes Respiratórios , Butanos/análise , Cicloexanonas/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Pentanos/análise , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise
19.
Anal Bioanal Chem ; 401(7): 2037-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21837466
20.
J Pharm Biomed Anal ; 53(4): 1022-7, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20674211

RESUMO

Polythiophene (PTh) and polypyrrole (PPy) as sorbent phases for solid phase microextraction (SPME) were applied in order to extract the multi-resistant Staphylococcus aureus (MRSA) antibiotic drugs (linezolid and daptomycin) from whole blood followed by high performance liquid chromatography (HPLC) determination with UV detection. Relative standard deviations (RSDs) of in vitro and pseudo in vivo measurements performed in whole blood were in the range of 4.58-15.91% and 6.09-17.33% for linezolid and daptomycin, respectively. Determination coefficients (R(2)) were in range of 0.9884-0.9945 and 0.9807-0.9818 for linezolid and daptomycin, respectively. This study proved better adsorption capacity of PTh SPME coating compared to PPy coating for both, linezolid and daptomycin.


Assuntos
Acetamidas/sangue , Antibacterianos/sangue , Cromatografia Líquida de Alta Pressão/métodos , Daptomicina/sangue , Oxazolidinonas/sangue , Microextração em Fase Sólida/métodos , Humanos , Linezolida , Polímeros/química , Pirróis/química , Tiofenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA