Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Drug Resist Updat ; 72: 101017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988981

RESUMO

The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.


Assuntos
Plaquetas , Megacariócitos , Animais , Humanos , Camundongos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Plaquetas/metabolismo , Diferenciação Celular , Megacariócitos/metabolismo , Mercaptopurina/farmacologia , Mercaptopurina/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo
2.
Clin Transl Sci ; 15(1): 204-220, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34476898

RESUMO

CYP2A6 activity, phenotyped by the nicotine metabolite ratio (NMR), is a predictor of several smoking behaviors, including cessation and smoking-related disease risk. The heritability of the NMR is 60-80%, yet weighted genetic risk scores (wGRSs) based on common variants explain only 30-35%. Rare variants (minor allele frequency <1%) are hypothesized to explain some of this missing heritability. We present two targeted sequencing studies where rare protein-coding variants are functionally characterized in vivo, in silico, and in vitro to examine this hypothesis. In a smoking cessation trial, 1687 individuals were sequenced; characterization measures included the in vivo NMR, in vitro protein expression, and metabolic activity measured from recombinant proteins. In a human liver bank, 312 human liver samples were sequenced; measures included RNA expression, protein expression, and metabolic activity from extracted liver tissue. In total, 38 of 47 rare coding variants identified were novel; characterizations ranged from gain-of-function to loss-of-function. On a population level, the portion of NMR variation explained by the rare coding variants was small (~1%). However, upon incorporation, the accuracy of the wGRS was improved for individuals with rare protein-coding variants (i.e., the residuals were reduced), and approximately one-third of these individuals (12/39) were re-assigned from normal to slow metabolizer status. Rare coding variants can alter an individual's CYP2A6 activity; their integration into wGRSs through precise functional characterization is necessary to accurately assess clinical outcomes and achieve precision medicine for all. Investigation into noncoding variants is warranted to further explain the missing heritability in the NMR.


Assuntos
Citocromo P-450 CYP2A6/genética , Polimorfismo de Nucleotídeo Único , Resultado do Tratamento , Ensaios Clínicos como Assunto , Frequência do Gene , Genótipo , Humanos , Abandono do Hábito de Fumar
3.
PLoS One ; 16(10): e0258579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34669728

RESUMO

Vitamin D3 (VD3) induces intestinal CYP3A that metabolizes orally administered anti-leukemic chemotherapeutic substrates dexamethasone (DEX) and dasatinib potentially causing a vitamin-drug interaction. To determine the impact of VD3 status on systemic exposure and efficacy of these chemotherapeutic agents, we used VD3 sufficient and deficient mice and performed pharmacokinetic and anti-leukemic efficacy studies. Female C57BL/6J and hCYP3A4 transgenic VD3 deficient mice had significantly lower duodenal (but not hepatic) mouse Cyp3a11 and hCYP3A4 expression compared to VD3 sufficient mice, while duodenal expression of Mdr1a, Bcrp and Mrp4 were significantly higher in deficient mice. When the effect of VD3 status on DEX systemic exposure was compared following a discontinuous oral DEX regimen, similar to that used to treat pediatric acute lymphoblastic leukemia patients, male VD3 deficient mice had significantly higher mean plasma DEX levels (31.7 nM) compared to sufficient mice (12.43 nM) at days 3.5 but not at any later timepoints. Following a single oral gavage of DEX, there was a statistically, but not practically, significant decrease in DEX systemic exposure in VD3 deficient vs. sufficient mice. While VD3 status had no effect on oral dasatinib's area under the plasma drug concentration-time curve, VD3 deficient male mice had significantly higher dasatinib plasma levels at t = 0.25 hr. Dexamethasone was unable to reverse the poorer survival of VD3 sufficient vs. deficient mice to BCR-ABL leukemia. In conclusion, although VD3 levels significantly altered intestinal mouse Cyp3a in female mice, DEX plasma exposure was only transiently different for orally administered DEX and dasatinib in male mice. Likewise, the small effect size of VD3 deficiency on single oral dose DEX clearance suggests that the clinical significance of VD3 levels on DEX systemic exposure are likely to be limited.


Assuntos
Dasatinibe , Vitamina D , Animais , Feminino , Masculino , Camundongos
4.
Clin Transl Sci ; 14(4): 1292-1302, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33503331

RESUMO

The frequencies of genetic variants in the CYP3A4 and CYP3A5 genes differ greatly across global populations, leading to profound differences in the metabolic activity of these enzymes and resulting drug metabolism rates, with important consequences for therapeutic safety and efficacy. Yet, the impact of genetic variants on enzyme activity are incompletely described, particularly in American Indian and Alaska Native (AIAN) populations. To characterize genetic variation in CYP3A4 and CYP3A5 and its effect on enzyme activity, we partnered with AIAN people living in two regions of Alaska: Yup'ik Alaska Native people living in the Yukon-Kuskokwim Delta region of rural southwest Alaska and AIAN people receiving care at the Southcentral Foundation in Anchorage, Alaska. We identified low frequencies of novel and known variation in CYP3A4 and CYP3A5, including low frequencies of the CYP3A4*1G and CYP3A5*1 variants, and linkage disequilibrium patterns that differed from those we previously identified in an American Indian population in western Montana. We also identified increased activity of the CYP3A4*1G allele in vitro and in vivo. We demonstrated that the CYP3A4*1G allele confers increased protein content in human lymphoblastoid cells and both increased protein content and increased activity in human liver microsomes. We confirmed enhanced CYP3A4-mediated 4ß-vitamin D hydroxylation activity in Yup'ik people with the CYP3A4*1G allele. AIAN people in Alaska and Montana who carry the CYP3A4*1G allele-coupled with low frequency of the functional CYP3A5*1 variant-may metabolize CYP3A substrates more rapidly than people with the reference CYP3A4 allele.


Assuntos
/genética , Citocromo P-450 CYP3A/metabolismo , Indígenas Norte-Americanos/genética , Xenobióticos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Linhagem Celular Tumoral , Criança , Pré-Escolar , Citocromo P-450 CYP3A/genética , Ensaios Enzimáticos , Feminino , Humanos , Lactente , Recém-Nascido , Desequilíbrio de Ligação , Masculino , Microssomos Hepáticos , Pessoa de Meia-Idade , Testes Farmacogenômicos , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Adulto Jovem
5.
Sci Rep ; 10(1): 2359, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047189

RESUMO

The effects of vitamin A and/or vitamin D deficiency were studied in an Arf-/- BCR-ABL acute lymphoblastic leukemia murine model. Vitamin D sufficient mice died earlier (p = 0.003) compared to vitamin D deficient (VDD) mice. Vitamin A deficient (VAD) mice fared worst with more rapid disease progression and decreased survival. Mice deficient for vitamins A and D (VADD) had disease progression similar to VAD mice. Regulatory T cells, previously shown to associate with poor BCR-ABL leukemia control, were present at higher frequencies among CD4+ splenocytes of vitamin A deficient vs. sufficient mice. In vitro studies demonstrated 1,25-dihydroxyvitamin D (1,25(OH)2VD3) increased the number of BCR-ABL ALL cells only when co-cultured with bone marrow stroma. 1,25(OH)2VD3 induced CXCL12 expression in vivo and in vitro in stromal cells and CXCL12 increased stromal migration and the number of BCR-ABL blasts. Vitamin D plus leukemia reprogrammed the marrow increasing production of collagens, potentially trapping ALL blasts. Vitamin A (all trans retinoic acid, ATRA) treated leukemic cells had increased apoptosis, decreased cells in S-phase, and increased cells in G0/G1. ATRA signaled through the retinoid X receptor to decrease BCR-ABL leukemic cell viability. In conclusion, vitamin A and D deficiencies have opposing effects on mouse survival from BCR-ABL ALL.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Vitamina A/metabolismo , Vitamina D/metabolismo , Animais , Apoptose , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Células Cultivadas , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores X de Retinoides/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Vitamina A/genética , Vitamina A/farmacologia , Vitamina D/genética , Vitamina D/farmacologia
6.
Clin Pharmacol Ther ; 107(6): 1383-1393, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868224

RESUMO

Expression quantitative trait locus (eQTL) studies in human liver are crucial for elucidating how genetic variation influences variability in disease risk and therapeutic outcomes and may help guide strategies to obtain maximal efficacy and safety of clinical interventions. Associations between expression microarray and genome-wide genotype data from four human liver eQTL studies (n = 1,183) were analyzed. More than 2.3 million cis-eQTLs for 15,668 genes were identified. When eQTLs were filtered against a list of 1,496 drug response genes, 187,829 cis-eQTLs for 1,191 genes were identified. Additionally, 1,683 sex-biased cis-eQTLs were identified, as well as 49 and 73 cis-eQTLs that colocalized with genome-wide association study signals for blood metabolite or lipid levels, respectively. Translational relevance of these results is evidenced by linking DPYD eQTLs to differences in safety of chemotherapy, linking the sex-biased regulation of PCSK9 expression to anti-lipid therapy, and identifying the G-protein coupled receptor GPR180 as a novel drug target for hypertriglyceridemia.


Assuntos
Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Fígado/metabolismo , Locos de Características Quantitativas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Criança , Pré-Escolar , Feminino , Variação Genética , Genótipo , Humanos , Hipolipemiantes/farmacologia , Lactente , Masculino , Pessoa de Meia-Idade , Fenótipo , Pró-Proteína Convertase 9/genética , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais , Adulto Jovem
7.
Drug Metab Dispos ; 46(11): 1725-1733, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111622

RESUMO

We investigated whether pheophorbide A (PhA) could serve as a selective breast cancer resistance protein (BCRP) substrate (victim) to screen in vivo using fluorescent live animal imaging for transporter-mediated interactions with orally administered inhibitors (perpetrators), and whether that could be coupled with serum sampling to measure the systemic concentration of PhA with a fast-throughput in vitro fluorescent assay. PhA is a breakdown product of chlorophyll and is highly fluorescent in the near-infrared (NIR) spectrum. Whole-body NIR fluorescence was greater in the Bcrp KO compared with wild-type (WT) mice fed a regular diet containing chlorophyll and PhA, with fluorescence in WT mice confined to the intestine. PhA intestinal enterocyte fluorescence, after removing lumen contents, was greater in Bcrp knockout (KO) mice versus WT mice due to PhA enterocyte absorption and lack of PhA efflux by Bcrp. This difference was eliminated by maintaining the mice on an alfalfa (chlorophyll/PhA)-free diet. The area under the fluorescence ratio-time curve up to 6 hours (AUCFL 0-6 h) of orally administrated PhA was 3.5 times greater in the Bcrp KO mice compared with WT mice, and the PhA serum concentration was 50-fold higher in KO mice. Pretreatment with known BCRP inhibitors lapatinib, curcumin, elacridar, pantoprazole, and sorafenib, at clinically relevant doses, significantly increased PhA AUCFL 0-6 h by 2.4-, 2.3-, 2.2-, 1.5-, and 1.4-fold, respectively, whereas the area under PhA serum concentration-time curve calculated up to 6 hours (AUCSerum 0-6 h) increased by 13.8-, 7.8-, 5.2-, 2.02-, and 1.45-fold, respectively, and corresponded to their hierarchy as in vitro BCRP inhibitors. Our results demonstrate that live animal imaging using PhA can be used to identify BCRP inhibitors and to assess the potential for BCRP-mediated clinical drug-drug interactions.


Assuntos
Clorofila/análogos & derivados , Interações Medicamentosas/fisiologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Clorofila/metabolismo , Cães , Fluorescência , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout
8.
Drug Metab Dispos ; 46(6): 888-896, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29602798

RESUMO

The major objective of this study was to investigate the association of genetic and nongenetic factors with variability in protein abundance and in vitro activity of the androgen-metabolizing enzyme UGT2B17 in human liver microsomes (n = 455). UGT2B17 abundance was quantified by liquid chromatography-tandem mass spectrometry proteomics, and enzyme activity was determined by using testosterone and dihydrotestosterone as in vitro probe substrates. Genotyping or gene resequencing and mRNA expression were also evaluated. Multivariate analysis was used to test the association of UGT2B17 copy number variation, single nucleotide polymorphisms (SNPs), age, and sex with its mRNA expression, abundance, and activity. UGT2B17 gene copy number and SNPs (rs7436962, rs9996186, rs28374627, and rs4860305) were associated with gene expression, protein levels, and androgen glucuronidation rates in a gene dose-dependent manner. UGT2B17 protein (mean ± S.D. picomoles per milligram of microsomal protein) is sparsely expressed in children younger than 9 years (0.12 ± 0.24 years) but profoundly increases from age 9 years to adults (∼10-fold) with ∼2.6-fold greater abundance in males than in females (1.2 vs. 0.47). Association of androgen glucuronidation with UGT2B15 abundance was observed only in the low UGT2B17 expressers. These data can be used to predict variability in the metabolism of UGT2B17 substrates. Drug companies should include UGT2B17 in early phenotyping assays during drug discovery to avoid late clinical failures.


Assuntos
Androgênios/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Fígado/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Genótipo , Humanos , Inativação Metabólica/genética , Lactente , Recém-Nascido , Masculino , Microssomos Hepáticos/metabolismo , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Testosterona/metabolismo , Adulto Jovem
9.
Drug Metab Dispos ; 46(7): 1014-1022, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29674491

RESUMO

To understand the systemic impact of breast cancer resistance protein (Bcrp) and P-glycoprotein (Pgp) deletion, untargeted metabolomics was performed on cerebral spinal fluid (CSF) and plasma of wild-type (WT) and Pgp and Bcrp double-knockout (dKO) rats anesthetized with ketamine-xylazine. We unexpectedly found elevated ketamine levels in both CSF and plasma of dKO versus WT rats. Therefore, the effect of these transporters was investigated on the 1) oral and intraperitoneal serum pharmacokinetics (PK) of ketamine, using a liquid chromatography method (high-performance liquid chromatography with ultraviolet detection), and 2) the anesthetic effect of ketamine using a duration of loss-of-righting reflex (dLORR) test in WT, Bcrp knockout (KO), Pgp KO, and Pgp/Bcrp dKO mice. The PK data demonstrated a significantly increased oral bioavailability and serum exposure of ketamine in dKO > Pgp KO > Bcrp KO mice compared with WT mice. Intraperitoneal ketamine-induced dLORR was significantly longer in dKO > Pgp KO > Bcrp KO > WT mice compared with WT mice. Inhibition of Bcrp and Pgp in WT mice using the dual Pgp/Bcrp inhibitor elacridar increased the ketamine-induced dLORR compared with vehicle-treated mice. The ketamine intracellular concentration was significantly decreased in Madin-Darby canine kidney II BCRP/PGP cells compared with the parental cells. In total, these results demonstrate that ketamine appears to be a dual Pgp/Bcrp substrate whose PK and pharmacodynamics are affected by Pgp and Bcrp-mediated efflux.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Ketamina/farmacologia , Ketamina/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Animais , Disponibilidade Biológica , Transporte Biológico/fisiologia , Linhagem Celular , Cães , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley
10.
Drug Metab Dispos ; 46(5): 567-580, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29514827

RESUMO

ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/metabolismo , Interações Medicamentosas/fisiologia , Fosfotransferases/metabolismo , Animais , Transporte Biológico/fisiologia , Humanos
11.
Pharmacogenet Genomics ; 28(1): 7-16, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29232328

RESUMO

OBJECTIVES: Smoking patterns and cessation rates vary widely across smokers and can be influenced by variation in rates of nicotine metabolism [i.e. cytochrome P450 2A6 (CYP2A6), enzyme activity]. There is high heritability of CYP2A6-mediated nicotine metabolism (60-80%) owing to known and unidentified genetic variation in the CYP2A6 gene. We aimed to identify and characterize additional genetic variants at the CYP2A6 gene locus. METHODS: A new CYP2A6-specific sequencing method was used to investigate genetic variation in CYP2A6. Novel variants were characterized in a White human liver bank that has been extensively phenotyped for CYP2A6. Linkage and haplotype structure for the novel single nucleotide polymorphisms (SNPs) were assessed. The association between novel five-SNP diplotypes and nicotine metabolism rate was investigated. RESULTS: Seven high-frequency (minor allele frequencies ≥6%) noncoding SNPs were identified as important contributors to CYP2A6 phenotypes in a White human liver bank (rs57837628, rs7260629, rs7259706, rs150298687 (also denoted rs4803381), rs56113850, rs28399453, and rs8192733), accounting for two times more variation in in-vitro CYP2A6 activity relative to the four established functional CYP2A6 variants that are frequently tested in Whites (CYP2A6*2, *4, *9, and *12). Two pairs of novel SNPs were in high linkage disequilibrium, allowing us to establish five-SNP diplotypes that were associated with CYP2A6 enzyme activity (rate of nicotine metabolism) in-vitro in the liver bank and in-vivo among smokers. CONCLUSION: The novel five-SNP diplotype may be useful to incorporate into CYP2A6 genotype models for personalized prediction of nicotine metabolism rate, cessation success, and response to pharmacotherapies.


Assuntos
Citocromo P-450 CYP2A6/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nicotina/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Frequência do Gene , Estudo de Associação Genômica Ampla , Humanos , Técnicas In Vitro , Desequilíbrio de Ligação , Fígado/química , Bancos de Tecidos , População Branca/genética
12.
Hepatology ; 67(4): 1531-1545, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29091294

RESUMO

Bile salt export pump (BSEP) adenosine triphosphate-binding cassette B11 (ABCB11) is a liver-specific ABC transporter that mediates canalicular bile salt excretion from hepatocytes. Human mutations in ABCB11 cause progressive familial intrahepatic cholestasis type 2. Although over 150 ABCB11 variants have been reported, our understanding of their biological consequences is limited by the lack of an experimental model that recapitulates the patient phenotypes. We applied CRISPR/Cas9-based genome editing technology to knock out abcb11b, the ortholog of human ABCB11, in zebrafish and found that these mutants died prematurely. Histological and ultrastructural analyses showed that abcb11b mutant zebrafish exhibited hepatocyte injury similar to that seen in patients with progressive familial intrahepatic cholestasis type 2. Hepatocytes of mutant zebrafish failed to excrete the fluorescently tagged bile acid that is a substrate of human BSEP. Multidrug resistance protein 1, which is thought to play a compensatory role in Abcb11 knockout mice, was mislocalized to the hepatocyte cytoplasm in abcb11b mutant zebrafish and in a patient lacking BSEP protein due to nonsense mutations in ABCB11. We discovered that BSEP deficiency induced autophagy in both human and zebrafish hepatocytes. Treatment with rapamycin restored bile acid excretion, attenuated hepatocyte damage, and extended the life span of abcb11b mutant zebrafish, correlating with the recovery of canalicular multidrug resistance protein 1 localization. CONCLUSIONS: Collectively, these data suggest a model that rapamycin rescues BSEP-deficient phenotypes by prompting alternative transporters to excrete bile salts; multidrug resistance protein 1 is a candidate for such an alternative transporter. (Hepatology 2018;67:1531-1545).


Assuntos
Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Bile/metabolismo , Colestase Intra-Hepática/genética , Hepatócitos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Autofagia/genética , Colestase Intra-Hepática/patologia , Feminino , Humanos , Imunossupressores/farmacologia , Lactente , Fígado/patologia , Masculino , Mutação , Sirolimo/farmacologia , Peixe-Zebra/metabolismo
13.
J Pharmacol Exp Ther ; 360(1): 129-139, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27815364

RESUMO

Cytochrome P450 2A6 CYP2A6: metabolizes several clinically relevant substrates, including nicotine, the primary psychoactive component in cigarette smoke. Smokers vary widely in their rate of inactivation and clearance of nicotine, altering numerous smoking phenotypes. We aimed to characterize independent and shared impact of genetic and nongenetic sources of variation in CYP2A6 mRNA, protein, and enzyme activity in a human liver bank (n = 360). For the assessment of genetic factors, we quantified levels of CYP2A6, cytochrome P450 oxidoreductase (POR), and aldo-keto reductase 1D1 (AKR1D1) mRNA, and CYP2A6 and POR proteins. CYP2A6 enzyme activity was determined through measurement of cotinine formation from nicotine and 7-hydroxycoumarin formation from coumarin. Donor DNA was genotyped for CYP2A6, POR, and AKR1D1 genetic variants. Nongenetic factors assessed included gender, age, and liver disease. CYP2A6 phenotype measures were positively correlated to each other (r values ranging from 0.47-0.88, P < 0.001). Female donors exhibited higher CYP2A6 mRNA expression relative to males (P < 0.05). Donor age was weakly positively correlated with CYP2A6 protein (r = 0.12, P < 0.05) and activity (r = 0.20, P < 0.001). CYP2A6 reduced-function genotypes, but not POR or AKR1D1 genotypes, were associated with lower CYP2A6 protein (P < 0.001) and activity (P < 0.01). AKR1D1 mRNA was correlated with CYP2A6 mRNA (r = 0.57, P < 0.001), protein (r = 0.30, P < 0.001), and activity (r = 0.34, P < 0.001). POR protein was correlated with CYP2A6 activity (r = 0.45, P < 0.001). Through regression analyses, we accounted for 17% (P < 0.001), 37% (P < 0.001), and 77% (P < 0.001) of the variation in CYP2A6 mRNA, protein, and activity, respectively. Overall, several independent and shared sources of variation in CYP2A6 activity in vitro have been identified, which could translate to variable hepatic clearance of nicotine.


Assuntos
Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Variação Genética , Fígado/enzimologia , Bancos de Tecidos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Nicotina/farmacologia , Oxirredutases/genética , RNA Mensageiro/genética , Umbeliferonas/farmacologia , Adulto Jovem
14.
Hum Mol Genet ; 25(14): 3106-3116, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27206982

RESUMO

A large haplotype on chromosome 19p13.11 tagged by rs10401969 in intron 8 of SURP and G patch domain containing 1 (SUGP1) is associated with coronary artery disease (CAD), plasma LDL cholesterol levels, and other energy metabolism phenotypes. Recent studies have suggested that TM6SF2 is the causal gene within the locus, but we postulated that this locus could harbor additional CAD risk genes, including the putative splicing factor SUGP1 Indeed, we found that rs10401969 regulates SUGP1 exon 8 skipping, causing non-sense-mediated mRNA decay. Hepatic Sugp1 overexpression in CD1 male mice increased plasma cholesterol levels 20-50%. In human hepatoma cell lines, SUGP1 knockdown stimulated 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) alternative splicing and decreased HMGCR transcript stability, thus reducing cholesterol synthesis and increasing LDL uptake. Our results strongly support a role for SUGP1 as a novel regulator of cholesterol metabolism and suggest that it contributes to the relationship between rs10401969 and plasma cholesterol.


Assuntos
LDL-Colesterol/genética , Colesterol/genética , Doença da Artéria Coronariana/genética , Metabolismo dos Lipídeos/genética , Fatores de Processamento de RNA/genética , Processamento Alternativo/genética , Animais , Colesterol/sangue , LDL-Colesterol/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/patologia , Éxons/genética , Regulação da Expressão Gênica , Haplótipos , Células Hep G2 , Humanos , Masculino , Camundongos , Polimorfismo de Nucleotídeo Único , Fatores de Processamento de RNA/biossíntese , Estabilidade de RNA
15.
Drug Metab Dispos ; 44(7): 999-1004, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27098745

RESUMO

Determining appropriate pharmacotherapy in young children can be challenging due to uncertainties in the development of drug disposition pathways. With knowledge of the ontogeny of drug-metabolizing enzymes and an emerging focus on drug transporters, the developmental pattern of the uptake transporters organic anion transporting polypeptide (OATP) 1B1 and 1B3 was assessed by relative protein quantification using Western blotting in 80 human pediatric liver specimens covering an age range from 9 days to 12 years. OATP1B3 exhibited high expression at birth, which declined over the first months of life, and then increased again in the preadolescent period. In comparison with children 6-12 years of age, the relative protein expression of highly glycosylated (total) OATP1B3 was 235% (357%) in children <3 months of age, 33% (64%) in the age group from 3 months to 2 years, and 50% (59%) in children 2-6 years of age. The fraction of highly glycosylated to total OATP1B3 increased with age, indicating ontogenic processes not only at the transcriptional level but also at the post-translational level. Similar to OATP1B3, OATP1B1 showed high interindividual variability in relative protein expression but no statistically significant difference among the studied age groups.


Assuntos
Envelhecimento/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Fatores Etários , Envelhecimento/genética , Criança , Pré-Escolar , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Glicosilação , Humanos , Lactente , Recém-Nascido , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Masculino , Processamento de Proteína Pós-Traducional , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/genética
16.
Biochem Pharmacol ; 96(4): 357-68, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26119819

RESUMO

The human pregnane X receptor (hPXR), a member of the nuclear receptor superfamily, senses xenobiotics and controls the transcription of genes encoding drug-metabolizing enzymes and transporters. The regulation of hPXR's transcriptional activation of its target genes is important for xenobiotic detoxification and endobiotic metabolism, and hPXR dysregulation can cause various adverse drug effects. Studies have implicated the putative phosphorylation site serine 350 (Ser(350)) in regulating hPXR transcriptional activity, but the mechanism of regulation remains elusive. Here we investigated the transactivation of hPXR target genes in vitro and in vivo by hPXR with a phosphomimetic mutation at Ser(350) (hPXR(S350D)). The S350D phosphomimetic mutation reduced the endogenous expression of cytochrome P450 3A4 (an hPXR target gene) in HepG2 and LS180 cells. Biochemical assays and structural modeling revealed that Ser(350) of hPXR is crucial for formation of the hPXR-retinoid X receptor alpha (RXRα) heterodimer. The S350D mutation abrogated heterodimerization in a ligand-independent manner, impairing hPXR-mediated transactivation. Further, in a novel humanized transgenic mouse model expressing the hPXR(S350D) transgene, we demonstrated that the S350D mutation alone is sufficient to impair hPXR transcriptional activity in mouse liver. This transgenic mouse model provides a unique tool to investigate the regulation and function of hPXR, including its non-genomic function, in vivo. Our finding that phosphorylation regulates hPXR activity has implications for development of novel hPXR antagonists and for safety evaluation during drug development.


Assuntos
Receptores de Esteroides/metabolismo , Receptor X Retinoide alfa/metabolismo , Serina/genética , Animais , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Humanos , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Modelos Moleculares , Mutação , Fosforilação , Receptor de Pregnano X , Multimerização Proteica , Receptores de Esteroides/genética , Receptor X Retinoide alfa/genética , Ativação Transcricional
17.
PLoS One ; 9(11): e111713, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25379760

RESUMO

High levels of factor XI (FXI) increase the risk of thromboembolic disease. However, the genetic and environmental factors regulating FXI expression are still largely unknown. The aim of our study was to evaluate the regulation of FXI by microRNAs (miRNAs) in the human liver. In silico prediction yielded four miRNA candidates that might regulate FXI expression. HepG2 cells were transfected with miR-181a-5p, miR-23a-3p, miR-16-5p and miR-195-5p. We used mir-494, which was not predicted to bind to F11, as a negative control. Only miR-181a-5p caused a significant decrease both in FXI protein and F11 mRNA levels. In addition, transfection with a miR-181a-5p inhibitor in PLC/PRF/5 hepatic cells increased both the levels of F11 mRNA and extracellular FXI. Luciferase assays in human colon cancer cells deficient for Dicer (HCT-DK) demonstrated a direct interaction between miR-181a-5p and 3'untranslated region of F11. Additionally, F11 mRNA levels were inversely and significantly correlated with miR-181a-5p levels in 114 healthy livers, but not with miR-494. This study demonstrates that FXI expression is directly regulated by a specific miRNA, miR-181a-5p, in the human liver. Future studies are necessary to further investigate the potential consequences of miRNA dysregulation in pathologies involving FXI.


Assuntos
Fator XI/genética , Regulação da Expressão Gênica/genética , Fígado/metabolismo , MicroRNAs/genética , Sequência de Bases , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Endocrinology ; 155(6): 2052-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24641623

RESUMO

25-Hydroxyvitamin D3 (25OHD3) is used as a clinical biomarker for assessment of vitamin D status. Blood levels of 25OHD3 represent a balance between its formation rate and clearance by several oxidative and conjugative processes. In the present study, the identity of human uridine 5'-diphosphoglucuronyltransferases (UGTs) capable of catalyzing the 25OHD3 glucuronidation reaction was investigated. Two isozymes, UGT1A4 and UGT1A3, were identified as the principal catalysts of 25OHD3 glucuronidation in human liver. Three 25OHD3 monoglucuronides (25OHD3-25-glucuronide, 25OHD3-3-glucuronide, and 5,6-trans-25OHD3-25-glucuronide) were generated by recombinant UGT1A4/UGT1A3, human liver microsomes, and human hepatocytes. The kinetics of 25OHD3 glucuronide formation in all systems tested conformed to the Michaelis-Menten model. An association between the UGT1A4*3 (Leu48Val) gene polymorphism with the rates of glucuronide formation was also investigated using human liver microsomes isolated from 80 genotyped livers. A variant allele dose effect was observed: the homozygous UGT1A4*3 livers (GG) had the highest glucuronidation activity, whereas the wild type (TT) had the lowest activity. Induction of UGT1A4 and UGT1A3 gene expression was also determined in human hepatocytes treated with pregnane X receptor/constitutive androstane receptor agonists, such as rifampin, carbamazepine, and phenobarbital. Although UGT mRNA levels were increased significantly by all of the known pregnane X receptor/constitutive androstane receptor agonists tested, rifampin, the most potent of the inducers, significantly induced total 25OHD3 glucuronide formation activity in human hepatocytes measured after 2, but not 4 and 24 hours, of incubation. Finally, the presence of 25OHD3-3-glucuronide in both human plasma and bile was confirmed, suggesting that the glucuronidation pathway might be physiologically relevant and contribute to vitamin D homeostasis in humans.


Assuntos
Calcifediol/metabolismo , Glucuronosiltransferase/metabolismo , Humanos , Técnicas In Vitro , Cinética , Microssomos Hepáticos/metabolismo
19.
Drug Metab Dispos ; 42(4): 695-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24430612

RESUMO

When investigating the potential for xanthine oxidase (XO)-mediated metabolism of a new chemical entity in vitro, selective chemical inhibition experiments are typically used. Most commonly, these inhibition experiments are performed using the inhibitor allopurinol (AP) and commercially prepared human liver cytosol (HLC) as the enzyme source. For reasons detailed herein, it is also a common practice to perfuse livers with solutions containing AP prior to liver harvest. The exposure to AP in HLC preparations could obviously pose a problem for measuring in vitro XO activity. To investigate this potential problem, an HPLC-MS/MS assay was developed to determine whether AP and its primary metabolite, oxypurinol, are retained within the cytosol for livers that were treated with AP during liver harvest. Differences in enzymatic activity for XO and aldehyde oxidase (AO) in human cytosol that can be ascribed to AP exposure were also evaluated. The results confirmed the presence of residual AP (some) and oxypurinol (all) human liver cytosol preparations that had been perfused with an AP-containing solution. In every case where oxypurinol was detected, XO activity was not observed. In contrast, the presence of AP and oxypurinol did not appear to have an impact on AO activity. Pooled HLC that was purchased from a commercial source also contained residual oxypurinol and did not show any XO activity. In the future, it is recommended that each HLC batch is screened for oxypurinol and/or XO activity prior to testing for XO-mediated metabolism of a new chemical entity.


Assuntos
Alopurinol/farmacologia , Citosol/enzimologia , Inibidores Enzimáticos/farmacologia , Fígado/enzimologia , Oxipurinol/farmacologia , Xantina Oxidase/metabolismo , Aldeído Oxidase/metabolismo , Alopurinol/análise , Alopurinol/metabolismo , Cromatografia Líquida de Alta Pressão , Citosol/efeitos dos fármacos , Inibidores Enzimáticos/análise , Inibidores Enzimáticos/metabolismo , Feminino , Humanos , Limite de Detecção , Fígado/efeitos dos fármacos , Masculino , Oxipurinol/análise , Oxipurinol/metabolismo , Perfusão , Espectrometria de Massas em Tandem , Técnicas de Cultura de Tecidos/métodos , Xantina Oxidase/antagonistas & inibidores
20.
Drug Metab Dispos ; 41(8): 1538-47, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23704699

RESUMO

Human liver gene regulatory (Bayesian) network analysis was previously used to identify a cytochrome P450 (P450) gene subnetwork with Aldo-keto reductase 1D1 (AKR1D1) as a key regulatory driver of this subnetwork. This study assessed the biologic importance of AKR1D1 [a key enzyme in the synthesis of bile acids, ligand activators of farnesoid X receptor (FXR), pregnane X receptor (PXR), and constitutive androstane receptor (CAR), known transcriptional regulators of P450s] to hepatic P450 expression. Overexpression of AKR1D1 in primary human hepatocytes led to increased expression of CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6. Conversely, AKR1D1 knockdown decreased expression of these P450s. We resequenced AKR1D1 from 98 donor livers and identified a 3'-untranslated region (UTR) (rs1872930) single nucleotide polymorphism (SNP) significantly associated with higher AKR1D1 mRNA expression. AKR1D1 3'-UTR-luciferase reporter studies showed that the variant allele resulted in higher luciferase activity, suggesting that the SNP increases AKR1D1 mRNA stability and/or translation efficiency. Consistent with AKR1D1's putative role as a driver of the P450 subnetwork, the AKR1D1 3'-UTR SNP was significantly associated with increased hepatic mRNA expression of multiple P450s (CYP3A4, CYP2C8, CYP2C9, CYP2C19, and CYP2B6) and CYP3A4, CYP2C8, CYP2C19, and CYP2B6 activities. After adjusting for multiple testing, the association remained significant for AKR1D1, CYP2C9, and CYP2C8 mRNA expression and CYP2C8 activity. These results provide new insights into the variation in expression and activity of P450s that can account for interindividual differences in drug metabolism/efficacy and adverse drug events. In conclusion, we provide the first experimental evidence supporting a role for AKR1D1 as a key genetic regulator of the P450 network.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Oxirredutases/genética , Processamento Alternativo , Variação Genética , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Fígado/enzimologia , Oxirredutases/fisiologia , Polimorfismo de Nucleotídeo Único , RNA Mensageiro/análise , RNA Mensageiro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA