Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
2.
bioRxiv ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36711819

RESUMO

Type 1 and Type 2 diabetes are distinct genetic diseases of the pancreas which are defined by the abnormal level of blood glucose. Understanding the initial molecular perturbations that occur during the pathogenesis of diabetes is of critical importance in understanding these disorders. The inability to biopsy the human pancreas of living donors hampers insights into early detection, as the majority of diabetes studies have been performed on peripheral leukocytes from the blood, which is not the site of pathogenesis. Therefore, efforts have been made by various teams including the Human Pancreas Analysis Program (HPAP) to collect pancreatic tissues from deceased organ donors with different clinical phenotypes. HPAP is designed to define the molecular pathogenesis of islet dysfunction by generating detailed datasets of functional, cellular, and molecular information in pancreatic tissues of clinically well-defined organ donors with Type 1 and Type 2 diabetes. Moreover, data generated by HPAP continously become available through a centralized database, PANC-DB, thus enabling the diabetes research community to access these multi-dimensional data prepublication. Here, we present the computational workflow for single-cell RNA-seq data analysis of 258,379 high-quality cells from the pancreatic islets of 67 human donors generated by HPAP, the largest existing scRNA-seq dataset of human pancreatic tissues. We report various computational steps including preprocessing, doublet removal, clustering and cell type annotation across single-cell RNA-seq data from islets of four distintct classes of organ donors, i.e. non-diabetic control, autoantibody positive but normoglycemic, Type 1 diabetic, and Type 2 diabetic individuals. Moreover, we present an interactive tool, called CellxGene developed by the Chan Zuckerberg initiative, to navigate these high-dimensional datasets. Our data and interactive tools provide a reliable reference for singlecell pancreatic islet biology studies, especially diabetes-related conditions.

3.
J Shoulder Elbow Surg ; 31(1): e1-e13, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34352401

RESUMO

BACKGROUND: Diabetic patients have a greater incidence of adhesive capsulitis (AC) and a more protracted disease course than patients with idiopathic AC. The purpose of this study was to compare gene expression differences between AC with diabetes mellitus and AC without diabetes mellitus. METHODS: Shoulder capsule samples were prospectively obtained from diabetic or nondiabetic patients who presented with shoulder dysfunction and underwent arthroscopy (N = 16). Shoulder samples of AC with and without diabetes (n = 8) were compared with normal shoulder samples with and without diabetes as the control group (n = 8). Shoulder capsule samples were subjected to whole-transcriptome RNA sequencing, and differential expression was analyzed with EdgeR. Only genes with a false discovery rate < 5% were included for further functional enrichment analysis. RESULTS: The sample population had a mean age of 47 years (range, 24-62 years), and the mean hemoglobin A1c level for nondiabetic and diabetic patients was 5.18% and 8.71%, respectively. RNA-sequencing analysis revealed that 66 genes were differentially expressed between diabetic patients and nondiabetic patients with AC whereas only 3 genes were differentially expressed when control patients with and without diabetes were compared. Furthermore, 286 genes were differentially expressed in idiopathic AC patients, and 61 genes were differentially expressed in diabetic AC patients. On gene clustering analysis, idiopathic AC was enriched with multiple structural and muscle-related pathways, such as muscle filament sliding, whereas diabetic AC included a greater number of hormonal and inflammatory signaling pathways, such as cellular response to corticotropin-releasing factor. CONCLUSIONS: Whole-transcriptome expression profiles demonstrate a fundamentally different underlying pathophysiology when comparing diabetic AC with idiopathic AC, suggesting that these conditions are distinct clinical entities. The new genes expressed explain the differences in the disease course and suggest new therapeutic targets that may lead to different treatment paradigms in these 2 subsets.


Assuntos
Bursite , Diabetes Mellitus , Articulação do Ombro , Artroscopia , Bursite/genética , Diabetes Mellitus/genética , Humanos , Pessoa de Meia-Idade , Ombro
4.
Cell Rep ; 37(5): 109919, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34731614

RESUMO

Type 2 diabetes mellitus (T2D) is a chronic age-related disorder characterized by hyperglycemia due to the failure of pancreatic beta cells to compensate for increased insulin demand. Despite decades of research, the pathogenic mechanisms underlying T2D remain poorly defined. Here, we use imaging mass cytometry (IMC) with a panel of 34 antibodies to simultaneously quantify markers of pancreatic exocrine, islet, and immune cells and stromal components. We analyze over 2 million cells from 16 pancreata obtained from donors with T2D and 13 pancreata from age-similar non-diabetic controls. In the T2D pancreata, we observe significant alterations in islet architecture, endocrine cell composition, and immune cell constituents. Thus, both HLA-DR-positive CD8 T cells and macrophages are enriched intra-islet in the T2D pancreas. These efforts demonstrate the utility of IMC for investigating complex events at the cellular level in order to provide insights into the pathophysiology of T2D.


Assuntos
Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 2/patologia , Citometria de Fluxo , Células Secretoras de Glucagon/patologia , Células Secretoras de Insulina/patologia , Macrófagos/patologia , Análise de Célula Única , Adolescente , Adulto , Idoso , Biomarcadores/análise , Linfócitos T CD8-Positivos/imunologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/imunologia , Feminino , Imunofluorescência , Células Secretoras de Glucagon/imunologia , Antígenos HLA-DR/análise , Humanos , Células Secretoras de Insulina/imunologia , Macrófagos/imunologia , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Adulto Jovem
5.
Gastroenterology ; 161(6): 1940-1952, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34529988

RESUMO

BACKGROUND & AIMS: Significant progress has been made since the first report of inflammatory bowel disease (IBD) in 1859, after decades of research that have contributed to the understanding of the genetic and environmental factors involved in IBD pathogenesis. Today, a range of treatments is available for directed therapy, mostly targeting the overactive immune response. However, the mechanisms by which the immune system contributes to disease pathogenesis and progression are not fully understood. One challenge hindering IBD research is the heterogeneous nature of the disease and the lack of understanding of how immune cells interact with one another in the gut mucosa. Introduction of a technology that enables expansive characterization of the inflammatory environment of human IBD tissues may address this gap in knowledge. METHODS: We used the imaging mass cytometry platform to perform highly multiplex image analysis of IBD and healthy deidentified intestine sections (6 Crohn's disease compared to 6 control ileum; 6 ulcerative colitis compared to 6 control colon). The acquired images were graded for inflammation severity by analysis of adjacent H&E tissue sections. We assigned more than 300,000 cells to unique cell types and performed analyses of tissue integrity, epithelial activity, and immune cell composition. RESULTS: The intestinal epithelia of patients with IBD exhibited increased proliferation rates and expression of HLA-DR compared to control tissues, and both features were positively correlated with the severity of inflammation. The neighborhood analysis determined enrichment of regulatory T cell interactions with CD68+ macrophages, CD4+ T cells, and plasma cells in both forms of IBD, whereas activated lysozyme C+ macrophages were preferred regulatory T cell neighbors in Crohn's disease but not ulcerative colitis. CONCLUSIONS: Altogether, our study shows the power of imaging mass cytometry and its ability to both quantify immune cell types and characterize their spatial interactions within the inflammatory environment by a single analysis platform.


Assuntos
Microambiente Celular , Colite Ulcerativa/patologia , Colo/patologia , Doença de Crohn/patologia , Células Epiteliais/patologia , Mucosa Intestinal/patologia , Microscopia Confocal , Adolescente , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Biomarcadores/metabolismo , Linfócitos T CD8-Positivos , Estudos de Casos e Controles , Comunicação Celular , Proliferação de Células , Criança , Colite Ulcerativa/imunologia , Colite Ulcerativa/metabolismo , Colo/imunologia , Colo/metabolismo , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Muramidase/metabolismo , Proteoma , Proteômica , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia
6.
JCI Insight ; 6(7)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33621209

RESUMO

Studies of human hepatitis B virus (HBV) immune pathogenesis are hampered by limited access to liver tissues and technologies for detailed analyses. Here, utilizing imaging mass cytometry (IMC) to simultaneously detect 30 immune, viral, and structural markers in liver biopsies from patients with hepatitis B e antigen+ (HBeAg+) chronic hepatitis B, we provide potentially novel comprehensive visualization, quantitation, and phenotypic characterizations of hepatic adaptive and innate immune subsets that correlated with hepatocellular injury, histological fibrosis, and age. We further show marked correlations between adaptive and innate immune cell frequencies and phenotype, highlighting complex immune interactions within the hepatic microenvironment with relevance to HBV pathogenesis.


Assuntos
Hepatite B Crônica/patologia , Citometria por Imagem/métodos , Fígado/imunologia , Fígado/virologia , Adolescente , Adulto , Fatores Etários , Biópsia , Criança , Feminino , Antígenos E da Hepatite B/metabolismo , Hepatite B Crônica/imunologia , Humanos , Processamento de Imagem Assistida por Computador , Imunidade Inata , Antígenos Comuns de Leucócito/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Proc Natl Acad Sci U S A ; 117(29): 17177-17186, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32631996

RESUMO

Hepatocyte nuclear factor 4α (HNF4α) is a master regulator of liver function and a tumor suppressor in hepatocellular carcinoma (HCC). In this study, we explore the reciprocal negative regulation of HNF4α and cyclin D1, a key cell cycle protein in the liver. Transcriptomic analysis of cultured hepatocyte and HCC cells found that cyclin D1 knockdown induced the expression of a large network of HNF4α-regulated genes. Chromatin immunoprecipitation-sequencing (ChIP-seq) demonstrated that cyclin D1 inhibits the binding of HNF4α to thousands of targets in the liver, thereby diminishing the expression of associated genes that regulate diverse metabolic activities. Conversely, acute HNF4α deletion in the liver induces cyclin D1 and hepatocyte cell cycle progression; concurrent cyclin D1 ablation blocked this proliferation, suggesting that HNF4α maintains proliferative quiescence in the liver, at least, in part, via repression of cyclin D1. Acute cyclin D1 deletion in the regenerating liver markedly inhibited hepatocyte proliferation after partial hepatectomy, confirming its pivotal role in cell cycle progression in this in vivo model, and enhanced the expression of HNF4α target proteins. Hepatocyte cyclin D1 gene ablation caused markedly increased postprandial liver glycogen levels (in a HNF4α-dependent fashion), indicating that the cyclin D1-HNF4α axis regulates glucose metabolism in response to feeding. In AML12 hepatocytes, cyclin D1 depletion led to increased glucose uptake, which was negated if HNF4α was depleted simultaneously, and markedly elevated glycogen synthesis. To summarize, mutual repression by cyclin D1 and HNF4α coordinately controls the cell cycle machinery and metabolism in the liver.


Assuntos
Ciclo Celular/fisiologia , Ciclina D1/genética , Ciclina D1/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Fígado/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Técnicas de Silenciamento de Genes , Hepatócitos/metabolismo , Hepatócitos/patologia , Regeneração Hepática/genética , Regeneração Hepática/fisiologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout
8.
Nat Commun ; 10(1): 5697, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31836704

RESUMO

In type 1 diabetes, the appearance of islet autoantibodies indicates the onset of islet autoimmunity, often many years before clinical symptoms arise. While T cells play a major role in the destruction of pancreatic beta cells, molecular underpinnings promoting aberrant T cell activation remain poorly understood. Here, we show that during islet autoimmunity an miR142-3p/Tet2/Foxp3 axis interferes with the efficient induction of regulatory T (Treg) cells, resulting in impaired Treg stability in mouse and human. Specifically, we demonstrate that miR142-3p is induced in islet autoimmunity and that its inhibition enhances Treg induction and stability, leading to reduced islet autoimmunity in non-obese diabetic mice. Using various cellular and molecular approaches we identify Tet2 as a direct target of miR142-3p, thereby linking high miR142-3p levels to epigenetic remodeling in Tregs. These findings offer a mechanistic model where during islet autoimmunity miR142-3p/Tet2-mediated Treg instability contributes to autoimmune activation and progression.


Assuntos
Autoimunidade/genética , Proteínas de Ligação a DNA/genética , Diabetes Mellitus Tipo 1/imunologia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/genética , Linfócitos T Reguladores/imunologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Criança , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/genética , Dioxigenases , Epigênese Genética/imunologia , Regulação da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Ilhotas Pancreáticas/imunologia , Masculino , Camundongos Knockout , MicroRNAs/agonistas , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Cultura Primária de Células
9.
Mol Cell ; 72(2): 222-238.e11, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30293786

RESUMO

DNA polymerase stalling activates the ATR checkpoint kinase, which in turn suppresses fork collapse and breakage. Herein, we describe use of ATR inhibition (ATRi) as a means to identify genomic sites of problematic DNA replication in murine and human cells. Over 500 high-resolution ATR-dependent sites were ascertained using two distinct methods: replication protein A (RPA)-chromatin immunoprecipitation (ChIP) and breaks identified by TdT labeling (BrITL). The genomic feature most strongly associated with ATR dependence was repetitive DNA that exhibited high structure-forming potential. Repeats most reliant on ATR for stability included structure-forming microsatellites, inverted retroelement repeats, and quasi-palindromic AT-rich repeats. Notably, these distinct categories of repeats differed in the structures they formed and their ability to stimulate RPA accumulation and breakage, implying that the causes and character of replication fork collapse under ATR inhibition can vary in a DNA-structure-specific manner. Collectively, these studies identify key sources of endogenous replication stress that rely on ATR for stability.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA/genética , Repetições de Microssatélites/genética , Animais , Proteínas de Ciclo Celular/genética , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Feminino , Instabilidade Genômica/genética , Humanos , Camundongos , Proteína de Replicação A/genética
10.
BMC Bioinformatics ; 19(1): 31, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402210

RESUMO

BACKGROUND: Identification of differentially methylated regions (DMRs) is the initial step towards the study of DNA methylation-mediated gene regulation. Previous approaches to call DMRs suffer from false prediction, use extreme resources, and/or require library installation and input conversion. RESULTS: We developed a new approach called Defiant to identify DMRs. Employing Weighted Welch Expansion (WWE), Defiant showed superior performance to other predictors in the series of benchmarking tests on artificial and real data. Defiant was subsequently used to investigate DNA methylation changes in iron-deficient rat hippocampus. Defiant identified DMRs close to genes associated with neuronal development and plasticity, which were not identified by its competitor. Importantly, Defiant runs between 5 to 479 times faster than currently available software packages. Also, Defiant accepts 10 different input formats widely used for DNA methylation data. CONCLUSIONS: Defiant effectively identifies DMRs for whole-genome bisulfite sequencing (WGBS), reduced-representation bisulfite sequencing (RRBS), Tet-assisted bisulfite sequencing (TAB-seq), and HpaII tiny fragment enrichment by ligation-mediated PCR-tag (HELP) assays.


Assuntos
Metilação de DNA/genética , Hipocampo/metabolismo , Deficiências de Ferro , Anotação de Sequência Molecular , Software , Algoritmos , Animais , Animais Recém-Nascidos , Ilhas de CpG/genética , Bases de Dados Genéticas , Feminino , Feto/metabolismo , Ratos Sprague-Dawley , Fatores de Tempo
11.
Diabetes ; 67(6): 1079-1085, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29475831

RESUMO

Bariatric surgery dramatically improves glycemic control, yet the underlying molecular mechanisms remain controversial because of confounding weight loss. We performed sleeve gastrectomy (SG) on obese and diabetic leptin receptor-deficient mice (db/db). One week postsurgery, mice weighed 5% less and displayed improved glycemia compared with sham-operated controls, and islets from SG mice displayed reduced expression of diabetes markers. One month postsurgery SG mice weighed more than preoperatively but remained near-euglycemic and displayed reduced hepatic lipid droplets. Pair feeding of SG and sham db/db mice showed that surgery rather than weight loss was responsible for reduced glycemia after SG. Although insulin secretion profiles from islets of sham and SG mice were indistinguishable, clamp studies revealed that SG causes a dramatic improvement in muscle and hepatic insulin sensitivity accompanied by hepatic regulation of hepatocyte nuclear factor-α and peroxisome proliferator-activated receptor-α targets. We conclude that long-term weight loss after SG requires leptin signaling. Nevertheless, SG elicits a remarkable improvement in glycemia through insulin sensitization independent of reduced feeding and weight loss.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2/complicações , Gastrectomia , Hiperglicemia/prevenção & controle , Resistência à Insulina , Fígado/metabolismo , Obesidade Mórbida/cirurgia , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnica Clamp de Glucose , Humanos , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Leptina/genética , Leptina/metabolismo , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Fígado/enzimologia , Fígado/patologia , Análise por Pareamento , Camundongos Mutantes , Músculo Esquelético/metabolismo , Obesidade Mórbida/complicações , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Aumento de Peso , Redução de Peso
12.
PLoS One ; 12(8): e0181812, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28813430

RESUMO

The gallbladder and cystic duct (GBCs) are parts of the extrahepatic biliary tree and share a common developmental origin with the ventral pancreas. Here, we report on the very first genetic reprogramming of patient-derived human GBCs to ß-like cells for potential autologous cell replacement therapy for type 1 diabetes. We developed a robust method for large-scale expansion of human GBCs ex vivo. GBCs were reprogrammed into insulin-producing pancreatic ß-like cells by a combined adenoviral-mediated expression of hallmark pancreatic endocrine transcription factors PDX1, MAFA, NEUROG3, and PAX6 and differentiation culture in vitro. The reprogrammed GBCs (rGBCs) strongly induced the production of insulin and pancreatic endocrine genes and these responded to glucose stimulation in vitro. rGBCs also expressed an islet-specific surface marker, which was used to enrich for the most highly reprogrammed cells. More importantly, global mRNA and microRNA expression profiles and protein immunostaining indicated that rGBCs adopted an overall ß-like state and these rGBCs engrafted in immunodeficient mice. Furthermore, comparative global expression analyses identified putative regulators of human biliary to ß cell fate conversion. In summary, we have developed, for the first time, a reliable and robust genetic reprogramming and culture expansion of primary human GBCs-derived from multiple unrelated donors-into pancreatic ß-like cells ex vivo, thus showing that human gallbladder is a potentially rich source of reprogrammable cells for autologous cell therapy in diabetes.


Assuntos
Reprogramação Celular , Vesícula Biliar/citologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Animais , Transdiferenciação Celular , Transplante de Células , Células Cultivadas , Técnicas de Reprogramação Celular , Análise por Conglomerados , Expressão Gênica , Perfilação da Expressão Gênica , Vetores Genéticos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Camundongos , MicroRNAs/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética , Transgenes
13.
Diabetes ; 66(7): 1901-1913, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28442472

RESUMO

Loss-of-function mutations of ß-cell KATP channels cause the most severe form of congenital hyperinsulinism (KATPHI). KATPHI is characterized by fasting and protein-induced hypoglycemia that is unresponsive to medical therapy. For a better understanding of the pathophysiology of KATPHI, we examined cytosolic calcium ([Ca2+] i ), insulin secretion, oxygen consumption, and [U-13C]glucose metabolism in islets isolated from the pancreases of children with KATPHI who required pancreatectomy. Basal [Ca2+] i and insulin secretion were higher in KATPHI islets compared with controls. Unlike controls, insulin secretion in KATPHI islets increased in response to amino acids but not to glucose. KATPHI islets have an increased basal rate of oxygen consumption and mitochondrial mass. [U-13C]glucose metabolism showed a twofold increase in alanine levels and sixfold increase in 13C enrichment of alanine in KATPHI islets, suggesting increased rates of glycolysis. KATPHI islets also exhibited increased serine/glycine and glutamine biosynthesis. In contrast, KATPHI islets had low γ-aminobutyric acid (GABA) levels and lacked 13C incorporation into GABA in response to glucose stimulation. The expression of key genes involved in these metabolic pathways was significantly different in KATPHI ß-cells compared with control, providing a mechanism for the observed changes. These findings demonstrate that the pathophysiology of KATPHI is complex, and they provide a framework for the identification of new potential therapeutic targets for this devastating condition.


Assuntos
Cálcio/metabolismo , Hiperinsulinismo Congênito/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Consumo de Oxigênio , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/metabolismo , Alanina/metabolismo , Isótopos de Carbono , Estudos de Casos e Controles , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/cirurgia , Feminino , Citometria de Fluxo , Expressão Gênica , Glutamina/biossíntese , Glicina/biossíntese , Glicólise/genética , Humanos , Imuno-Histoquímica , Lactente , Recém-Nascido , Secreção de Insulina , Células Secretoras de Insulina/ultraestrutura , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Canais KATP/genética , Canais KATP/metabolismo , Masculino , Metabolômica , Microscopia Eletrônica de Transmissão , Mutação , Pancreatectomia , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Serina/biossíntese , Receptores de Sulfonilureias/genética , Ácido gama-Aminobutírico/metabolismo
14.
Nat Commun ; 7: 11756, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27399229

RESUMO

Human pancreatic islets of Langerhans contain five distinct endocrine cell types, each producing a characteristic hormone. The dysfunction or loss of the insulin-producing ß cells causes diabetes mellitus, a disease that harms millions. Until now, ß cells were generally regarded as a single, homogenous cell population. Here we identify four antigenically distinct subtypes of human ß cells, which we refer to as ß1-4, and which are distinguished by differential expression of ST8SIA1 and CD9. These subpopulations are always present in normal adult islets and have diverse gene expression profiles and distinct basal and glucose-stimulated insulin secretion. Importantly, the ß cell subtype distribution is profoundly altered in type 2 diabetes. These data suggest that this antigenically defined ß cell heterogeneity is functionally and likely medically relevant.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/citologia , Sialiltransferases/metabolismo , Tetraspanina 29/metabolismo , Adulto , Idoso , Feminino , Citometria de Fluxo , Hemoglobinas Glicadas/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas , Masculino , Pessoa de Meia-Idade , Adulto Jovem
15.
Mol Metab ; 5(3): 233-244, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26977395

RESUMO

OBJECTIVE: Although glucagon-secreting α-cells and insulin-secreting ß-cells have opposing functions in regulating plasma glucose levels, the two cell types share a common developmental origin and exhibit overlapping transcriptomes and epigenomes. Notably, destruction of ß-cells can stimulate repopulation via transdifferentiation of α-cells, at least in mice, suggesting plasticity between these cell fates. Furthermore, dysfunction of both α- and ß-cells contributes to the pathophysiology of type 1 and type 2 diabetes, and ß-cell de-differentiation has been proposed to contribute to type 2 diabetes. Our objective was to delineate the molecular properties that maintain islet cell type specification yet allow for cellular plasticity. We hypothesized that correlating cell type-specific transcriptomes with an atlas of open chromatin will identify novel genes and transcriptional regulatory elements such as enhancers involved in α- and ß-cell specification and plasticity. METHODS: We sorted human α- and ß-cells and performed the "Assay for Transposase-Accessible Chromatin with high throughput sequencing" (ATAC-seq) and mRNA-seq, followed by integrative analysis to identify cell type-selective gene regulatory regions. RESULTS: We identified numerous transcripts with either α-cell- or ß-cell-selective expression and discovered the cell type-selective open chromatin regions that correlate with these gene activation patterns. We confirmed cell type-selective expression on the protein level for two of the top hits from our screen. The "group specific protein" (GC; or vitamin D binding protein) was restricted to α-cells, while CHODL (chondrolectin) immunoreactivity was only present in ß-cells. Furthermore, α-cell- and ß-cell-selective ATAC-seq peaks were identified to overlap with known binding sites for islet transcription factors, as well as with single nucleotide polymorphisms (SNPs) previously identified as risk loci for type 2 diabetes. CONCLUSIONS: We have determined the genetic landscape of human α- and ß-cells based on chromatin accessibility and transcript levels, which allowed for detection of novel α- and ß-cell signature genes not previously known to be expressed in islets. Using fine-mapping of open chromatin, we have identified thousands of potential cis-regulatory elements that operate in an endocrine cell type-specific fashion.

16.
Neurobiol Dis ; 82: 132-140, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26071899

RESUMO

We have recently demonstrated that short term bexarotene treatment of APP/PS1 mice significantly improves their cognitive performance. While there were no changes in plaque load, or insoluble Aß levels in brain, biochemical analysis strongly suggested improved clearance of soluble Aß, including Aß oligomers. To get further insight into molecular mechanisms underlying this therapeutic effect, we explored genome-wide differential gene expression in brain of bexarotene and control treated APP/PS1 mice. We performed high throughput massively parallel sequencing on mRNA libraries generated from cortices of bexarotene or vehicle treated APP/PS1 mice and compared the expression profiles for differential gene expression. Gene Ontology (GO) Biological Process categories with the highest fold enrichment and lowest False Discovery Rate (FDR) are clustered in GO terms immune response, inflammatory response, oxidation-reduction and immunoglobulin mediated immune response. Chromatin immunoprecipitation (ChIP) followed by ChIP-QPCR, and RT-QPCR expression assays were used to validate select genes, including Trem2, Tyrobp, Apoe and Ttr, differentially expressed in response to Retinoid X Receptor (RXR) activation. We found that bexarotene significantly increased the phagocytosis of soluble and insoluble Aß in BV2 cells. The results of our study demonstrate that in AD model mice expressing human APP, gene networks up-regulated in response to RXR activation by the specific, small molecule, ligand bexarotene may influence diverse regulatory pathways that are considered critical for cognitive performance, inflammatory response and Aß clearance, and may provide an explanation of the bexarotene therapeutic effect at the molecular level. This study also confirms that unbiased massive parallel sequencing approaches are useful and highly informative for revealing brain molecular and cellular mechanisms underlying responses to activated nuclear hormone receptors in AD animal models.


Assuntos
Anticarcinógenos/farmacologia , Encéfalo/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética , Tetra-Hidronaftalenos/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Bexaroteno , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Fagocitose/efeitos dos fármacos , Receptores Imunológicos/metabolismo , Receptores X de Retinoides/metabolismo , Análise de Sequência de RNA
17.
BMJ Open Diabetes Res Care ; 2(1): e000052, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469308

RESUMO

BACKGROUND: The transcription factor 7-like 2 (TCF7L2) locus is strongly implicated in the pathogenesis of type 2 diabetes (T2D). We previously mapped the genomic regions bound by TCF7L2 using ChIP (chromatin immunoprecipitation)-seq in the colorectal carcinoma cell line, HCT116, revealing an unexpected highly significant over-representation of genome-wide association studies (GWAS) loci associated primarily with endocrine (in particular T2D) and cardiovascular traits. METHODS: In order to further explore if this observed phenomenon occurs in other cell lines, we carried out ChIP-seq in HepG2 cells and leveraged ENCODE data for five additional cell lines. Given that only a minority of the predicted genetic component to most complex traits has been identified to date, plus our GWAS-related observations with respect to TCF7L2 occupancy, we investigated if restricting association analyses to the genes yielded from this approach, in order to reduce the constraints of multiple testing, could reveal novel T2D loci. RESULTS: We found strong evidence for the continued enrichment of endocrine and cardiovascular GWAS categories, with additional support for cancer. When investigating all the known GWAS loci bound by TCF7L2 in the shortest gene list, derived from HCT116, the coronary artery disease-associated variant, rs46522 at the UBE2Z-GIP-ATP5G1-SNF8 locus, yielded significant association with T2D within DIAGRAM. Furthermore, when we analyzed tag-SNPs (single nucleotide polymorphisms) in genes not previously implicated by GWAS but bound by TCF7L2 within 5 kb, we observed a significant association of rs4780476 within CPPED1 in DIAGRAM. CONCLUSIONS: ChIP-seq data generated with this GWAS-implicated transcription factor provided a biologically plausible method to limit multiple testing in the assessment of genome-wide genotyping data to uncover two novel T2D-associated loci.

18.
Proc Natl Acad Sci U S A ; 111(46): E4946-53, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25369933

RESUMO

Notch is needed for T-cell development and is a common oncogenic driver in T-cell acute lymphoblastic leukemia. The protooncogene c-Myc (Myc) is a critical target of Notch in normal and malignant pre-T cells, but how Notch regulates Myc is unknown. Here, we identify a distal enhancer located >1 Mb 3' of human and murine Myc that binds Notch transcription complexes and physically interacts with the Myc proximal promoter. The Notch1 binding element in this region activates reporter genes in a Notch-dependent, cell-context-specific fashion that requires a conserved Notch complex binding site. Acute changes in Notch activation produce rapid changes in H3K27 acetylation across the entire enhancer (a region spanning >600 kb) that correlate with Myc expression. This broad Notch-influenced region comprises an enhancer region containing multiple domains, recognizable as discrete H3K27 acetylation peaks. Leukemia cells selected for resistance to Notch inhibitors express Myc despite epigenetic silencing of enhancer domains near the Notch transcription complex binding sites. Notch-independent expression of Myc in resistant cells is highly sensitive to inhibitors of bromodomain containing 4 (Brd4), a change in drug sensitivity that is accompanied by preferential association of the Myc promoter with more 3' enhancer domains that are strongly dependent on Brd4 for function. These findings indicate that altered long-range enhancer activity can mediate resistance to targeted therapies and provide a mechanistic rationale for combined targeting of Notch and Brd4 in leukemia.


Assuntos
Elementos Facilitadores Genéticos/genética , Regulação Leucêmica da Expressão Gênica/genética , Genes myc , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/metabolismo , Animais , Sequência de Bases , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Genes Reporter , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Regiões Promotoras Genéticas/genética , Conformação Proteica , Receptor Notch1/antagonistas & inibidores , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/antagonistas & inibidores , Transcrição Gênica
19.
Stem Cell Res ; 13(2): 275-83, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25151611

RESUMO

Pancreatic Lgr5 expression has been associated with organoid-forming epithelial progenitor populations but the identity of the organoid-initiating epithelial cell subpopulation has remained elusive. Injury causes the emergence of an Lgr5(+) organoid-forming epithelial progenitor population in the adult mouse liver and pancreas. Here, we define the origin of organoid-initiating cells from mouse pancreas and liver prior to Lgr5 activation. This clonogenic population was defined as MIC1-1C3(+)/CD133(+)/CD26(-) in both tissues and the frequency of organoid initiation within this population was approximately 5% in each case. The transcriptomes of these populations overlapped extensively and showed enrichment of epithelial progenitor-associated regulatory genes such as Sox9 and FoxJ1. Surprisingly, pancreatic organoid cells also had the capacity to generate hepatocyte-like cells upon transplantation to Fah(-/-) mice, indicating a differentiation capacity similar to hepatic organoids. Although spontaneous endocrine differentiation of pancreatic progenitors was not observed in culture, adenoviral delivery of fate-specifying factors Pdx1, Neurog3 and MafA induced insulin expression without glucagon or somatostatin. Pancreatic organoid cultures therefore preserve many key attributes of progenitor cells while allowing unlimited expansion, facilitating the study of fate determination.


Assuntos
Diferenciação Celular , Linhagem da Célula , Hepatócitos/metabolismo , Fígado/metabolismo , Organoides/metabolismo , Pâncreas/metabolismo , Células-Tronco/metabolismo , Adenoviridae/genética , Animais , Biomarcadores/metabolismo , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Hepatócitos/transplante , Hidrolases/deficiência , Hidrolases/genética , Insulina/metabolismo , Fígado/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organoides/citologia , Pâncreas/citologia , Fenótipo , Transdução de Sinais , Transplante de Células-Tronco , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução Genética
20.
Diabetes ; 63(12): 4206-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25028525

RESUMO

Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal ß-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, ß-cell-specific Isl-1 loss-of-function mouse: Isl-1(L/L); Pdx1-CreER(Tm). Ablating Isl-1 in postnatal ß-cells reduced glucose tolerance without significantly reducing ß-cell mass or increasing ß-cell apoptosis. Rather, islets from Isl-1(L/L); Pdx1-CreER(Tm) mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1(L/L); Pdx1-CreER(Tm) mice and ßTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the ß-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal ß-cell function, directly regulates Pdx1 and Slc2a2, and has a mature ß-cell cistrome distinct from that of pancreatic endocrine progenitors.


Assuntos
Resistência à Insulina/genética , Células Secretoras de Insulina/metabolismo , Proteínas com Homeodomínio LIM/genética , Elementos Reguladores de Transcrição/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Teste de Tolerância a Glucose , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Insulina/genética , Insulina/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Camundongos , Camundongos Knockout , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA