Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 88(3): 1740-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24257621

RESUMO

In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC(50)). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC(50) was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.


Assuntos
Antivirais/administração & dosagem , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Dengue/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Nucleosídeos/administração & dosagem , Animais , Citidina/administração & dosagem , Citidina/análogos & derivados , Citocinas/imunologia , Dengue/imunologia , Vírus da Dengue/genética , Vírus da Dengue/fisiologia , Feminino , Humanos , Camundongos , Nucleosídeos/farmacologia , Pró-Fármacos/administração & dosagem
2.
Antimicrob Agents Chemother ; 55(9): 4072-80, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21730119

RESUMO

We describe a novel translation inhibitor that has anti-dengue virus (DENV) activity in vitro and in vivo. The inhibitor was identified through a high-throughput screening using a DENV infection assay. The compound contains a benzomorphan core structure. Mode-of-action analysis indicated that the compound inhibits protein translation in a viral RNA sequence-independent manner. Analysis of the stereochemistry demonstrated that only one enantiomer of the racemic compound inhibits viral RNA translation. Medicinal chemistry was performed to eliminate a metabolically labile glucuronidation site of the compound to improve its in vivo stability. Pharmacokinetic analysis showed that upon a single subcutaneous dosing of 25 mg/kg of body weight in mice, plasma levels of the compound reached a C(max) (maximum plasma drug concentration) above the protein-binding-adjusted 90% effective concentration (EC(90)) value of 0.96 µM. In agreement with the in vivo pharmacokinetic results, treatment of DENV-infected mice with 25 mg/kg of compound once per day reduced peak viremia by about 40-fold. However, mice treated with 75 mg/kg of compound per day exhibited adverse effects. Collectively, our results demonstrate that the benzomorphan compounds inhibit DENV through suppression of RNA translation. The therapeutic window of the current compounds needs to be improved for further development.


Assuntos
Antivirais/farmacologia , Antivirais/farmacocinética , Vírus da Dengue/efeitos dos fármacos , Animais , Antivirais/efeitos adversos , Antivirais/química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Cricetinae , Vírus da Dengue/genética , Feminino , Humanos , Camundongos , Estrutura Molecular , RNA Viral/genética , Ratos , Células Vero
3.
Antimicrob Agents Chemother ; 54(8): 3255-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20516277

RESUMO

Dengue virus (DENV) is the most prevalent mosquito-borne viral pathogen that infects humans. Neither a vaccine nor an antiviral therapy is currently available for DENV. Here, we report an adenosine nucleoside prodrug that potently inhibits DENV replication both in cell culture and in a DENV mouse model. NITD449 (2'-C-acetylene-7-deaza-7-carbamoyladenosine) was initially identified as a parental compound that inhibits all four serotypes of DENV with low cytotoxicity. However, in vivo pharmacokinetic studies indicated that NITD449 had a low level of exposure in plasma when dosed orally. To increase the oral bioavailability, we covalently linked isobutyric acids to the 3'- and 5'-hydroxyl groups of ribose via ester linkage to NITD449, leading to the prodrug NITD203 (3',5'-O-diisobutyryl-2'-C-acetylene-7-deaza-7-carbamoyl-adenosin). Pharmacokinetic analysis showed that upon oral dosing of the prodrug, NITD203 was readily converted to NITD449, resulting in improved exposure of the parental compound in plasma in both mouse and rat. In DENV-infected AG129 mice, oral dosing of the prodrug at 25 mg/kg of body weight reduced peak viremia by 30-fold. Antiviral spectrum analysis showed that NITD203 inhibited various flaviviruses (DENV, yellow fever virus, and West Nile virus) and hepatitis C virus but not Chikungunya virus (an alphavirus). Mode-of-action analysis, using a luciferase-reporting replicon, indicated that NITD203 inhibited DENV RNA synthesis. Although NITD203 exhibited potent in vitro and in vivo efficacies, the compound could not reach a satisfactory no-observable-adverse-effect level (NOAEL) in a 2-week in vivo toxicity study. Nevertheless, our results demonstrate that a prodrug approach using a nucleoside analog could potentially be developed for flavivirus antiviral therapy.


Assuntos
Adenosina/análogos & derivados , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Dengue/tratamento farmacológico , Pró-Fármacos/farmacologia , Replicação Viral/efeitos dos fármacos , Adenosina/farmacocinética , Adenosina/farmacologia , Adenosina/uso terapêutico , Animais , Antivirais/química , Antivirais/farmacocinética , Antivirais/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Dengue/virologia , Células Epiteliais/virologia , Ésteres/química , Humanos , Camundongos , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/uso terapêutico , Ratos , Células Vero
4.
Antimicrob Agents Chemother ; 54(7): 2932-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20457821

RESUMO

We recently reported that (2R,3R,4R,5R)-2-(4-amino-pyrrolo[2,3-d]pyrimidin-7-yl)-3-ethynyl-5-hydroxy-methyl-tetrahydro-furan-3,4-diol is a potent inhibitor of dengue virus (DENV), with 50% effective concentration (EC(50)) and cytotoxic concentration (CC(50)) values of 0.7 microM and >100 microM, respectively. Here we describe the synthesis, structure-activity relationship, and antiviral characterization of the inhibitor. In an AG129 mouse model, a single-dose treatment of DENV-infected mice with the compound suppressed peak viremia and completely prevented death. Mode-of-action analysis using a DENV replicon indicated that the compound blocks viral RNA synthesis. Recombinant adenosine kinase could convert the compound to a monophosphate form. Suppression of host adenosine kinase, using a specific inhibitor (iodotubercidin) or small interfering RNA (siRNA), abolished or reduced the compound's antiviral activity in cell culture. Studies of rats showed that (14)C-labeled compound was converted to mono-, di-, and triphosphate metabolites in vivo. Collectively, the results suggest that this adenosine inhibitor is phosphorylated to an active (triphosphate) form which functions as a chain terminator for viral RNA synthesis.


Assuntos
Adenosina/farmacologia , Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/genética , RNA Viral/genética , Adenosina/química , Adenosina/metabolismo , Adenosina Quinase/genética , Adenosina Quinase/metabolismo , Animais , Antivirais/química , Antivirais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Masculino , Fosforilação , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Ratos , Ratos Wistar
5.
Proc Natl Acad Sci U S A ; 106(48): 20435-9, 2009 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19918064

RESUMO

Dengue virus (DENV), a mosquito-borne flavivirus, is a major public health threat. The virus poses risk to 2.5 billion people worldwide and causes 50 to 100 million human infections each year. Neither a vaccine nor an antiviral therapy is currently available for prevention and treatment of DENV infection. Here, we report a previously undescribed adenosine analog, NITD008, that potently inhibits DENV both in vitro and in vivo. In addition to the 4 serotypes of DENV, NITD008 inhibits other flaviviruses, including West Nile virus, yellow fever virus, and Powassan virus. The compound also suppresses hepatitis C virus, but it does not inhibit nonflaviviruses, such as Western equine encephalitis virus and vesicular stomatitis virus. A triphosphate form of NITD008 directly inhibits the RNA-dependent RNA polymerase activity of DENV, indicating that the compound functions as a chain terminator during viral RNA synthesis. NITD008 has good in vivo pharmacokinetic properties and is biologically available through oral administration. Treatment of DENV-infected mice with NITD008 suppressed peak viremia, reduced cytokine elevation, and completely prevented the infected mice from death. No observed adverse effect level (NOAEL) was achieved when rats were orally dosed with NITD008 at 50 mg/kg daily for 1 week. However, NOAEL could not be accomplished when rats and dogs were dosed daily for 2 weeks. Nevertheless, our results have proved the concept that a nucleoside inhibitor could be developed for potential treatment of flavivirus infections.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/metabolismo , Dengue/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Viremia/tratamento farmacológico , Adenosina/química , Animais , Antivirais/farmacocinética , Antivirais/uso terapêutico , Chlorocebus aethiops , Cães , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Camundongos , Estrutura Molecular , Nível de Efeito Adverso não Observado , Ratos , Células Vero
6.
Antiviral Res ; 84(3): 260-6, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19800368

RESUMO

The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Aedes , Animais , Linhagem Celular , Cricetinae , Vírus da Dengue/química , Vírus da Dengue/fisiologia , Testes de Sensibilidade Microbiana , Ligação Proteica/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/química
7.
Eur J Immunol ; 39(10): 2809-21, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19637226

RESUMO

Monocytes and macrophages are target cells for dengue infection. Besides their potential role for virus replication, activated monocytes/macrophages produce cytokines that may be critical for dengue pathology. To study the in vivo role of monocytes and macrophages for virus replication, we depleted monocytes and macrophages in IFN-alphabetagammaR knockout mice with clodronate liposomes before dengue infection. Although less virus was first recovered in the draining LN in the absence of macrophages, monocyte/macrophage depletion eventually resulted in a ten-fold higher systemic viral titer. A massive infiltration of CD11b(+)CD11c(low)Ly6C(low) monocytes into infected organs was observed in parallel with increasing virus titers before viremia was controlled. Depletion of monocytes in the blood before or after local infection had no impact on virus titers, suggesting that monocytes are not required as "virus-shuttles". Our data provide evidence that systemic viremia is established independently of tissue macrophages present at the site of infection and blood monocytes. Instead, we demonstrate the importance of monocytes/macrophages for the control of dengue virus.


Assuntos
Vírus da Dengue/crescimento & desenvolvimento , Dengue/imunologia , Dengue/virologia , Macrófagos/citologia , Macrófagos/imunologia , Animais , Contagem de Células , Movimento Celular/imunologia , Ácido Clodrônico/administração & dosagem , Ácido Clodrônico/farmacologia , Células Epidérmicas , Epiderme/virologia , Granulócitos/citologia , Células de Langerhans/virologia , Lipossomos , Linfa/virologia , Linfonodos/citologia , Linfonodos/virologia , Tecido Linfoide/citologia , Tecido Linfoide/virologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Monócitos/citologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/virologia , Peritônio/citologia , Receptor de Interferon alfa e beta/genética , Receptores de Interferon/genética , Baço/citologia , Baço/virologia , Carga Viral , Proteínas não Estruturais Virais/metabolismo , Viremia , Receptor de Interferon gama
8.
J Gen Virol ; 90(Pt 4): 799-809, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19264660

RESUMO

The flavivirus envelope glycoprotein (E) is responsible for viral attachment and entry by membrane fusion. Its ectodomain is the primary target of the humoral immune response. In particular, the C-terminal Ig-like domain III of E, which is exposed at the surface of the viral particle, forms an attractive antigen for raising protective monoclonal antibodies (mAb). 9F12, a mouse mAb raised against a dengue virus (DENV) serotype 2 recombinant domain III, cross-reacts with corresponding domains from the other three DENV serotypes and also with West Nile virus. mAb 9F12 binds with nanomolar affinity to a conserved epitope that maps to the viral surface comprising residues 305, 307, 310 and 330 of the E protein. mAb 9F12 neutralizes all four DENV serotypes in plaque reduction assays. We expressed a single-chain Fv from 9F12 that retains the binding activity of the parent mAb. Adsorption and fusion inhibition assays indicate that mAb 9F12 prevents early steps of viral entry. Its virus inhibition activity and broad cross-reactivity makes mAb 9F12 a suitable candidate for optimization and humanization into a therapeutic antibody to treat severe infections by dengue.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Dengue/classificação , Vírus da Dengue/imunologia , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Cricetinae , Reações Cruzadas , Dengue/imunologia , Vírus da Dengue/genética , Mapeamento de Epitopos , Fusão de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Testes de Neutralização , Sorotipagem , Células Vero , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
9.
Antimicrob Agents Chemother ; 53(5): 1823-31, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19223625

RESUMO

The incidence of dengue fever epidemics has increased dramatically over the last few decades. However, no vaccine or antiviral therapies are available. Therefore, the need for safe and effective antiviral drugs has become imperative. The entry of dengue virus into a host cell is mediated by its major envelope (E) protein. The crystal structure of the E protein reveals a hydrophobic pocket that is presumably important for low-pH-mediated membrane fusion. High-throughput docking with this hydrophobic pocket was performed, and hits were evaluated in cell-based assays. Compound 6 was identified as one of the inhibitors and had an average 50% effective concentration of 119 nM against dengue virus serotype 2 in a human cell line. Mechanism-of-action studies demonstrated that compound 6 acts at an early stage during dengue virus infection. It arrests dengue virus in vesicles that colocalize with endocytosed dextran and inhibits NS3 expression. The inhibitors described in this report can serve as molecular probes for the study of the entry of flavivirus into host cells.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/patogenicidade , Bibliotecas de Moléculas Pequenas , Internalização do Vírus/efeitos dos fármacos , Animais , Antivirais/química , Sítios de Ligação , Linhagem Celular , Cricetinae , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/crescimento & desenvolvimento , Humanos , Modelos Moleculares , Relação Estrutura-Atividade , Proteínas do Envelope Viral/antagonistas & inibidores
10.
J Infect Dis ; 195(5): 665-74, 2007 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-17262707

RESUMO

Dengue fever is an emerging arboviral disease for which no vaccine or antiviral treatment exists and that causes thousands of fatalities each year. To develop an in vivo test system for antidengue drugs, AG129 mice, which are deficient for the interferon- alpha / beta and - gamma receptors, were injected with unadapted dengue virus, resulting in a dose-dependent transient viremia lasting several days and peaking on day 3 after infection. Additionally, nonstructural protein 1, increased levels of proinflammatory cytokines, and neutralizing IgM and IgG antibodies were found, and mice had splenomegaly. Oral administration of the antiviral compounds 7-deaza-2'-C-methyl-adenosine, N-nonyl-deoxynojirimycin, or 6-O-butanoyl castanospermine significantly reduced viremia in a dose-dependent manner, even after delayed treatment, leading to a reduction of splenomegaly and proinflammatory cytokine levels. The results validate this dengue viremia mouse model as a suitable system for testing antidengue drugs and indicate that antiviral treatment during the acute phase of dengue fever can reduce the severity of the disease.


Assuntos
Antivirais/uso terapêutico , Dengue/sangue , Dengue/tratamento farmacológico , Modelos Animais de Doenças , Viremia , Replicação Viral/efeitos dos fármacos , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , Animais , Antivirais/farmacologia , Dengue/imunologia , Relação Dose-Resposta a Droga , Indolizinas/farmacologia , Camundongos , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Fatores de Tempo , Tubercidina/análogos & derivados , Tubercidina/uso terapêutico , Viremia/tratamento farmacológico , Viremia/imunologia
11.
Mol Cell Biol ; 26(22): 8515-26, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16966369

RESUMO

Cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts (6-4PPs) comprise major UV-induced photolesions. If left unrepaired, these lesions can induce mutations and skin cancer, which is facilitated by UV-induced immunosuppression. Yet the contribution of lesion and cell type specificity to the harmful biological effects of UV exposure remains currently unclear. Using a series of photolyase-transgenic mice to ubiquitously remove either CPDs or 6-4PPs from all cells in the mouse skin or selectively from basal keratinocytes, we show that the majority of UV-induced acute effects to require the presence of CPDs in basal keratinocytes in the mouse skin. At the fundamental level of gene expression, CPDs induce the expression of genes associated with repair and recombinational processing of DNA damage, as well as apoptosis and a response to stress. At the organismal level, photolyase-mediated removal of CPDs, but not 6-4PPs, from the genome of only basal keratinocytes substantially diminishes the incidence of skin tumors; however, it does not affect the UVB-mediated immunosuppression. Taken together, these findings reveal a differential role of basal keratinocytes in these processes, providing novel insights into the skin's acute and chronic responses to UV in a lesion- and cell-type-specific manner.


Assuntos
Carcinoma/etiologia , Desoxirribodipirimidina Fotoliase/metabolismo , Terapia de Imunossupressão/métodos , Queratinócitos/efeitos da radiação , Neoplasias Cutâneas/etiologia , Pele/patologia , Animais , Apoptose , Carcinoma/genética , Carcinoma/prevenção & controle , Carnitina/análogos & derivados , Carnitina/genética , Carnitina/fisiologia , Análise por Conglomerados , Desoxirribodipirimidina Fotoliase/genética , Hiperplasia/etiologia , Queratina-14/genética , Queratinócitos/patologia , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Dímeros de Pirimidina , Tolerância a Radiação , Pele/efeitos da radiação , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/prevenção & controle , Transcrição Gênica , Raios Ultravioleta
12.
Curr Biol ; 15(2): 105-15, 2005 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-15668165

RESUMO

BACKGROUND: The high and steadily increasing incidence of ultraviolet-B (UV-B)-induced skin cancer is a problem recognized worldwide. UV introduces different types of damage into the DNA, notably cyclobutane pyrimidine dimers (CPDs) and (6-4) photoproducts (6-4PPs). If unrepaired, these photolesions can give rise to cell death, mutation induction, and onset of carcinogenic events, but the relative contribution of CPDs and 6-4PPs to these biological consequences of UV exposure is hardly known. Because placental mammals have undergone an evolutionary loss of photolyases, repair enzymes that directly split CPDs and 6-4PPs into the respective monomers in a light-dependent and lesion-specific manner, they can only repair UV-induced DNA damage by the elaborate nucleotide excision repair pathway. RESULTS: To assess the relative contribution of CPDs and 6-4PPs to the detrimental effects of UV light, we generated transgenic mice that ubiquitously express CPD-photolyase, 6-4PP-photolyase, or both, thereby allowing rapid light-dependent repair of CPDs and/or 6-4PPs in the skin. We show that the vast majority of (semi)acute responses in the UV-exposed skin (i.e., sunburn, apoptosis, hyperplasia, and mutation induction) can be ascribed to CPDs. Moreover, CPD-photolyase mice, in contrast to 6-4PP-photolyase mice, exhibit superior resistance to sunlight-induced tumorigenesis. CONCLUSIONS: Our data unequivocally identify CPDs as the principal cause of nonmelanoma skin cancer and provide genetic evidence that CPD-photolyase enzymes can be employed as effective tools to combat skin cancer.


Assuntos
Carcinoma/etiologia , Dano ao DNA/efeitos da radiação , Reparo do DNA/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Dímeros de Pirimidina/metabolismo , Neoplasias Cutâneas/etiologia , Raios Ultravioleta , Animais , Apoptose/efeitos da radiação , Carcinoma/prevenção & controle , Linhagem Celular , Desoxirribodipirimidina Fotoliase/genética , Expressão Gênica , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Cutâneas/prevenção & controle
13.
EMBO J ; 21(17): 4719-29, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12198174

RESUMO

During evolution, placental mammals appear to have lost cyclobutane pyrimidine dimer (CPD) photolyase, an enzyme that efficiently removes UV-induced CPDs from DNA in a light-dependent manner. As a consequence, they have to rely solely on the more complex, and for this lesion less efficient, nucleotide excision repair pathway. To assess the contribution of poor repair of CPDs to various biological effects of UV, we generated mice expressing a marsupial CPD photolyase transgene. Expression from the ubiquitous beta-actin promoter allowed rapid repair of CPDs in epidermis and dermis. UV-exposed cultured dermal fibroblasts from these mice displayed superior survival when treated with photoreactivating light. Moreover, photoreactivation of CPDs in intact skin dramatically reduced acute UV effects like erythema (sunburn), hyperplasia and apoptosis. Mice expressing the photolyase from keratin 14 promoter photo reactivate CPDs in basal and early differentiating keratinocytes only. Strikingly, in these animals, the anti-apoptotic effect appears to extend to other skin compartments, suggesting the presence of intercellular apoptotic signals. Thus, providing mice with CPD photolyase significantly improves repair and uncovers the biological effects of CPD lesions.


Assuntos
Reparo do DNA/genética , Desoxirribodipirimidina Fotoliase/fisiologia , Macropodidae/genética , Dímeros de Pirimidina/metabolismo , Tolerância a Radiação/genética , Actinas/genética , Animais , Apoptose/genética , Células Cultivadas/efeitos da radiação , DNA/efeitos da radiação , Dano ao DNA , Desoxirribodipirimidina Fotoliase/genética , Epiderme/patologia , Epiderme/efeitos da radiação , Eritema/etiologia , Eritema/prevenção & controle , Fibroblastos/efeitos da radiação , Glutationa Transferase/genética , Humanos , Hiperplasia , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Queratinas/genética , Macropodidae/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Lesões Experimentais por Radiação/prevenção & controle , Proteínas Recombinantes de Fusão/fisiologia , Pele/patologia , Pele/efeitos da radiação , Transgenes , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA