Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Methods Mol Biol ; 2376: 207-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34845612

RESUMO

Single-molecule fluorescence spectroscopy has become an important technique for studying the conformational dynamics and folding of proteins. A key step for performing such experiments is the availability of high-quality samples. This chapter describes a simple and widely applicable strategy for preparing proteins that are site-specifically labeled with a donor and an acceptor dye for single-molecule Förster resonance energy transfer (FRET) experiments. The method is based on introducing two cysteine residues that are labeled with maleimide-functionalized fluorophores, combined with high-resolution chromatography. We discuss how to optimize site-specific labeling even in the absence of orthogonal coupling chemistry and present purification strategies that are suitable for samples ranging from intrinsically disordered proteins to large folded proteins. We also discuss common problems in protein labeling, how to avoid them, and how to stringently control sample quality.


Assuntos
Espectrometria de Fluorescência , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Proteínas Intrinsicamente Desordenadas , Imagem Individual de Molécula
2.
Commun Biol ; 4(1): 762, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155320

RESUMO

Overexpression of the receptor tyrosine kinase HER2 plays a critical role in the development of various tumors. Biparatopic designed ankyrin repeat proteins (bipDARPins) potently induce apoptosis in HER2-addicted breast cancer cell lines. Here, we have investigated how the spatiotemporal receptor organization at the cell surface is modulated by these agents and is distinguished from other molecules, which do not elicit apoptosis. Binding of conventional antibodies is accompanied by moderate reduction of receptor mobility, in agreement with HER2 being dimerized by the bivalent IgG. In contrast, the most potent apoptosis-inducing bipDARPins lead to a dramatic arrest of HER2. Dual-color single-molecule tracking revealed that the HER2 "lockdown" by these bipDARPins is caused by the formation of HER2-DARPin oligomer chains, which are trapped in nanoscopic membrane domains. Our findings establish that efficient neutralization of receptor tyrosine kinase signaling can be achieved through intermolecular bipDARPin crosslinking alone, resulting in inactivated, locked-down bipDARPin-HER2 complexes.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Multimerização Proteica , Receptor ErbB-2/antagonistas & inibidores , Repetição de Anquirina , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Receptor ErbB-2/química , Receptor ErbB-2/fisiologia
3.
ACS Chem Biol ; 15(2): 457-468, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31985201

RESUMO

Peptides play an important role in intermolecular interactions and are frequent analytes in diagnostic assays, also as unstructured, linear epitopes in whole proteins. Yet, due to the many different sequence possibilities even for short peptides, classical selection of binding proteins from a library, one at a time, is not scalable to proteomes. However, moving away from selection to a rational assembly of preselected modules binding to predefined linear epitopes would split the problem into smaller parts. These modules could then be reassembled in any desired order to bind to, in principle, arbitrary sequences, thereby circumventing any new rounds of selection. Designed Armadillo repeat proteins (dArmRPs) are modular, and they do bind elongated peptides in a modular way. Their consensus sequence carries pockets that prefer arginine and lysine. In our quest to select pockets for all amino acid side chains, we had discovered that repetitive sequences can lead to register shifts and peptide flipping during selections from libraries, hindering the selection of new binding specificities. To solve this problem, we now created an orthogonal binding specificity by a combination of grafting from ß-catenin, computational design and mutual optimization of the pocket and the bound peptide. We have confirmed the design and the desired interactions by X-ray structure determination. Furthermore, we could confirm the absence of sliding in solution by a single-molecule Förster resonance energy transfer. The new pocket could be moved from the N-terminus of the protein to the middle, retaining its properties, further underlining the modularity of the system.


Assuntos
Proteínas do Domínio Armadillo/metabolismo , Peptídeos/metabolismo , beta Catenina/metabolismo , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/genética , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Peptídeos/química , Ligação Proteica , Domínios Proteicos , Engenharia de Proteínas , beta Catenina/química , beta Catenina/genética
4.
Elife ; 82019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31845888

RESUMO

Hsp70 molecular chaperones are abundant ATP-dependent nanomachines that actively reshape non-native, misfolded proteins and assist a wide variety of essential cellular processes. Here, we combine complementary theoretical approaches to elucidate the structural and thermodynamic details of the chaperone-induced expansion of a substrate protein, with a particular emphasis on the critical role played by ATP hydrolysis. We first determine the conformational free-energy cost of the substrate expansion due to the binding of multiple chaperones using coarse-grained molecular simulations. We then exploit this result to implement a non-equilibrium rate model which estimates the degree of expansion as a function of the free energy provided by ATP hydrolysis. Our results are in quantitative agreement with recent single-molecule FRET experiments and highlight the stark non-equilibrium nature of the process, showing that Hsp70s are optimized to effectively convert chemical energy into mechanical work close to physiological conditions.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Algoritmos , Proteínas de Choque Térmico HSP70/química , Hidrólise , Cinética , Modelos Químicos , Chaperonas Moleculares/química , Simulação de Dinâmica Molecular , Termodinâmica
5.
Nat Commun ; 10(1): 2453, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165735

RESUMO

RNA chaperones are proteins that aid in the folding of nucleic acids, but remarkably, many of these proteins are intrinsically disordered. How can these proteins function without a well-defined three-dimensional structure? Here, we address this question by studying the hepatitis C virus core protein, a chaperone that promotes viral genome dimerization. Using single-molecule fluorescence spectroscopy, we find that this positively charged disordered protein facilitates the formation of compact nucleic acid conformations by acting as a flexible macromolecular counterion that locally screens repulsive electrostatic interactions with an efficiency equivalent to molar salt concentrations. The resulting compaction can bias unfolded nucleic acids towards folding, resulting in faster folding kinetics. This potentially widespread mechanism is supported by molecular simulations that rationalize the experimental findings by describing the chaperone as an unstructured polyelectrolyte.


Assuntos
Hepacivirus/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Dobramento de RNA , RNA Viral/metabolismo , Proteínas do Core Viral/metabolismo , Dimerização , Genoma Viral , Chaperonas Moleculares/metabolismo , Ácidos Nucleicos/metabolismo , Imagem Individual de Molécula , Espectrometria de Fluorescência , Eletricidade Estática
6.
Biophys J ; 115(6): 996-1006, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30173887

RESUMO

Interactions between emerging nascent polypeptide chains and the ribosome can modulate cotranslational protein folding. However, it has remained unclear how such interactions can affect the binding of nascent chains to their cellular targets. We thus investigated on the ribosome the interaction between two intrinsically disordered proteins of opposite charge, ACTR and NCBD, which form a high-affinity complex in a coupled folding-and-binding reaction. Using fluorescence correlation spectroscopy and arrest-peptide-mediated force measurements in vitro and in vivo, we find that the ACTR-NCBD complex can form cotranslationally but only with ACTR as the nascent chain and NCBD free in solution, not vice versa. We show that this surprising asymmetry in behavior is caused by pronounced charge interactions: attraction of the positively charged nascent chain of NCBD to the negatively charged ribosomal surface competes with complex formation and prevents ACTR binding. In contrast, the negatively charged nascent ACTR is repelled by the ribosomal surface and thus remains available for productively binding its partner. Electrostatic interactions may thus be more important for cotranslational folding and binding than previously thought.


Assuntos
Coativador 3 de Receptor Nuclear/química , Coativador 3 de Receptor Nuclear/metabolismo , Dobramento de Proteína , Ribossomos/metabolismo , Modelos Moleculares , Domínios Proteicos
7.
J Struct Biol ; 201(2): 108-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28864298

RESUMO

Designed armadillo repeat proteins (dArmRPs) were developed to create a modular peptide binding technology where each of the structural repeats binds two residues of the target peptide. An essential prerequisite for such a technology is a dArmRP geometry that matches the peptide bond length. To this end, we determined a large set (n=27) of dArmRP X-ray structures, of which 12 were previously unpublished, to calculate curvature parameters that define their geometry. Our analysis shows that consensus dArmRPs exhibit curvatures close to the optimal range for modular peptide recognition. Binding of peptide ligands can induce a curvature within the desired range, as confirmed by single-molecule FRET experiments in solution. On the other hand, computationally designed ArmRPs, where side chains have been chosen with the intention to optimally fit into a geometrically optimized backbone, turned out to be more divergent in reality, and thus not suitable for continuous peptide binding. Furthermore, we show that the formation of a crystal lattice can induce small but significant deviations from the curvature adopted in solution, which can interfere with the evaluation of repeat protein scaffolds when high accuracy is required. This study corroborates the suitability of consensus dArmRPs as a scaffold for the development of modular peptide binders.


Assuntos
Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Peptídeos/metabolismo , Proteínas do Domínio Armadillo/genética , Cálcio/química , Cálcio/metabolismo , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência/métodos , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Imagem Individual de Molécula/métodos
8.
J Mol Biol ; 430(16): 2453-2467, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29045818

RESUMO

Many of the unanswered questions associated with hepatitis C virus assembly are related to the core protein (HCVcp), which forms an oligomeric nucleocapsid encompassing the viral genome. The structural properties of HCVcp have been difficult to quantify, at least in part because it is an intrinsically disordered protein. We have used single-molecule Förster Resonance Energy Transfer techniques to study the conformational dimensions and dynamics of the HCVcp nucleocapsid domain (HCVncd) at various stages during the RNA-induced formation of nucleocapsid-like particles. Our results indicate that HCVncd is a typical intrinsically disordered protein. When it forms small ribonucleoprotein complexes with various RNA hairpins from the 3' end of the HCV genome, it compacts but remains intrinsically disordered and conformationally dynamic. Above a critical RNA concentration, these ribonucleoprotein complexes rapidly and cooperatively assemble into large nucleocapsid-like particles, wherein the individual HCVncd subunits become substantially more extended.


Assuntos
Hepacivirus/genética , RNA Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Sítios de Ligação , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Hepacivirus/fisiologia , Modelos Moleculares , Conformação Molecular , Nucleocapsídeo/metabolismo , Ligação Proteica , Ribonucleoproteínas/metabolismo , Montagem de Vírus
9.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29237846

RESUMO

Rhesus TRIM5α (rhTRIM5α) potently restricts replication of human immunodeficiency virus type 1 (HIV-1). Restriction is mediated through direct binding of the C-terminal B30.2 domain of TRIM5α to the assembled HIV-1 capsid core. This host-pathogen interaction involves multiple capsid molecules within the hexagonal HIV-1 capsid lattice. However, the molecular details of this interaction and the precise site at which the B30.2 domain binds remain largely unknown. The human orthologue of TRIM5α (hsTRIM5α) fails to block infection by HIV-1 both in vivo and in vitro This is thought to be due to differences in binding to the capsid lattice. To map the species-specific binding surface on the HIV-1 capsid lattice, we used microscale thermophoresis and dual-focus fluorescence correlation spectroscopy to measure binding affinity of rhesus and human TRIM5α B30.2 domains to a series of HIV-1 capsid variants that mimic distinct capsid arrangements at each of the symmetry axes of the HIV-1 capsid lattice. These surrogates include previously characterized capsid oligomers, as well as a novel chemically cross-linked capsid trimer that contains cysteine substitutions near the 3-fold axis of symmetry. The results demonstrate that TRIM5α binding involves multiple capsid molecules along the 2-fold and 3-fold interfaces between hexamers and indicate that the binding interface at the 3-fold axis contributes to the well-established differences in restriction potency between TRIM5α orthologues.IMPORTANCE TRIM5α is a cellular protein that fends off infection by retroviruses through binding to the viruses' protein shell surrounding its genetic material. This shell is composed of several hundred capsid proteins arranged in a honeycomb-like hexagonal pattern that is conserved across retroviruses. By binding to the complex lattice formed by multiple capsid proteins, rather than to a single capsid monomer, TRIM5α restriction activity persists despite the high mutation rate in retroviruses such as HIV-1. In rhesus monkeys, but not in humans, TRIM5α confers resistance to HIV-1. By measuring the binding of human and rhesus TRIM5α to a series of engineered HIV-1 capsid mimics of distinct capsid lattice interfaces, we reveal the HIV-1 capsid surface critical for species-specific binding by TRIM5α.


Assuntos
Proteínas do Capsídeo/química , Proteínas de Transporte/química , HIV-1/química , Proteínas/química , Animais , Fatores de Restrição Antivirais , Proteínas do Capsídeo/genética , Cristalografia por Raios X , Ciclofilina A/química , Ciclofilina A/genética , HIV-1/genética , HIV-1/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Macaca mulatta , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes , Células Sf9 , Especificidade da Espécie , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases
10.
J Am Chem Soc ; 138(36): 11714-26, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27583570

RESUMO

There has been a long-standing controversy regarding the effect of chemical denaturants on the dimensions of unfolded and intrinsically disordered proteins: A wide range of experimental techniques suggest that polypeptide chains expand with increasing denaturant concentration, but several studies using small-angle X-ray scattering (SAXS) have reported no such increase of the radius of gyration (Rg). This inconsistency challenges our current understanding of the mechanism of chemical denaturants, which are widely employed to investigate protein folding and stability. Here, we use a combination of single-molecule Förster resonance energy transfer (FRET), SAXS, dynamic light scattering (DLS), and two-focus fluorescence correlation spectroscopy (2f-FCS) to characterize the denaturant dependence of the unfolded state of the spectrin domain R17 and the intrinsically disordered protein ACTR in two different denaturants. Standard analysis of the primary data clearly indicates an expansion of the unfolded state with increasing denaturant concentration irrespective of the protein, denaturant, or experimental method used. This is the first case in which SAXS and FRET have yielded even qualitatively consistent results regarding expansion in denaturant when applied to the same proteins. To more directly illustrate this self-consistency, we used both SAXS and FRET data in a Bayesian procedure to refine structural ensembles representative of the observed unfolded state. This analysis demonstrates that both of these experimental probes are compatible with a common ensemble of protein configurations for each denaturant concentration. Furthermore, the resulting ensembles reproduce the trend of increasing hydrodynamic radius with denaturant concentration obtained by 2f-FCS and DLS. We were thus able to reconcile the results from all four experimental techniques quantitatively, to obtain a comprehensive structural picture of denaturant-induced unfolded state expansion, and to identify the most likely sources of earlier discrepancies.


Assuntos
Peptídeos/química , Desnaturação Proteica/efeitos dos fármacos , Teorema de Bayes , Transferência Ressonante de Energia de Fluorescência , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
J Biol Chem ; 291(11): 5652-5663, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26757820

RESUMO

The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic activity of various Escherichia coli and Salmonella enterica strains. Soluble ClyA monomers spontaneously assemble into annular dodecameric pore complexes upon contact with membranes or detergent. At ClyA monomer concentrations above ∼100 nm, the rate-limiting step in detergent- or membrane- induced pore assembly is the unimolecular reaction from the monomer to the assembly-competent protomer, which then oligomerizes rapidly to active pore complexes. In the absence of detergent, ClyA slowly forms soluble oligomers. Here we show that soluble ClyA oligomers cannot form dodecameric pore complexes after the addition of detergent and are hemolytically inactive. In addition, we demonstrate that the natural cysteine pair Cys-87/Cys-285 of ClyA forms a disulfide bond under oxidizing conditions and that both the oxidized and reduced ClyA monomers assemble to active pores via the same pathway in the presence of detergent, in which an unstructured, monomeric intermediate is transiently populated. The results show that the oxidized ClyA monomer assembles to pore complexes about one order of magnitude faster than the reduced monomer because the unstructured intermediate of oxidized ClyA is less stable and dissolves more rapidly than the reduced intermediate. Moreover, we show that oxidized ClyA forms soluble, inactive oligomers in the absence of detergent much faster than the reduced monomer, providing an explanation for several contradictory reports in which oxidized ClyA had been described as inactive.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Detergentes/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Proteínas Hemolisinas/química , Proteínas Hemolisinas/ultraestrutura , Hemólise , Cavalos , Modelos Moleculares , Oxirredução , Conformação Proteica , Multimerização Proteica , Solubilidade
12.
J Chem Theory Comput ; 11(11): 5543-53, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26574341

RESUMO

Chemical denaturants are the most commonly used perturbation applied to study protein stability and folding kinetics as well as the properties of unfolded polypeptides. We build on recent work balancing the interactions of proteins and water, and accurate models for the solution properties of urea and guanidinium chloride, to develop a combined force field that is able to capture the strength of interactions between proteins and denaturants. We use solubility data for a model tetraglycine peptide in each denaturant to tune the protein-denaturant interaction by a novel simulation methodology. We validate the results against data for more complex sequences: single-molecule Förster resonance energy transfer data for a 34-residue fragment of the globular protein CspTm and photoinduced electron transfer quenching data for the disordered peptides C(AGQ)nW in denaturant solution as well as the chemical denaturation of the mini-protein Trp cage. The combined force field model should aid our understanding of denaturation mechanisms and the interpretation of experiment.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Modelos Moleculares , Peptídeos/química , Desnaturação Proteica , Ureia/química
13.
Biophys J ; 108(11): 2721-31, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-26039173

RESUMO

Molecular simulation is a valuable and complementary tool that may assist with the interpretation of single-molecule Förster resonance energy transfer (FRET) experiments, if the energy function is of sufficiently high quality. Here we present force-field parameters for one of the most common pairs of chromophores used in experiments, AlexaFluor 488 and 594. From microsecond molecular-dynamics simulations, we are able to recover both experimentally determined equilibrium constants and association/dissociation rates of the chromophores with free tryptophan, as well as the decay of fluorescence anisotropy of a labeled protein. We find that it is particularly important to obtain a correct balance of solute-water interactions in the simulations in order to faithfully capture the experimental anisotropy decays, which provide a sensitive benchmark for fluorophore mobility. Lastly, by a combination of experiment and simulation, we address a potential complication in the interpretation of experiments on polyproline, used as a molecular ruler for FRET experiments, namely the potential association of one of the chromophores with the polyproline helix. Under conditions where simulations accurately capture the fluorescence anisotropy decay, we find at most a modest, transient population of conformations in which the chromophores associate with the polyproline. Explicit calculation of FRET transfer efficiencies for short polyprolines yields results in good agreement with experiment. These results illustrate the potential power of a combination of molecular simulation and experiment in quantifying biomolecular dynamics.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Simulação de Dinâmica Molecular , Corantes Fluorescentes/química , Peptídeos/química , Conformação Proteica , Proteínas/química , Triptofano/química
14.
Anal Chem ; 87(15): 7559-65, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26110465

RESUMO

Electrospray ionization and mass spectrometry have revolutionized the chemical analysis of biological molecules, including proteins. However, the correspondence between a protein's native structure and its structure in the mass spectrometer (where it is gaseous) remains unclear. Here, we show that fluorescence (Förster) resonance energy transfer (FRET) measurements combined with mass spectrometry provides intramolecular distance constraints in gaseous, ionized proteins. Using an experimental setup which combines trapping mass spectrometry and laser-induced fluorescence spectroscopy, the structure of a fluorescently labeled mutant variant of the protein GB1 was probed as a function of charge state. Steady-state fluorescence emission spectra and time-resolved donor fluorescence measurements of mass-selected GB1 show a marked decrease in the FRET efficiency with increasing number of charges on the gaseous protein, which suggests a Coulombically driven unfolding and expansion of its structure. This lies in stark contrast to the pH stability of GB1 in solution. Comparison with solution-phase single-molecule FRET measurements show lower FRET efficiency for all charge states of the gaseous protein examined, indicating that the ensemble of conformations present in the gas phase is, on average, more expanded than the native form. These results represent the first FRET measurements on a mass-selected protein and illustrate the utility of FRET for obtaining a new kind of structural information for large, desolvated biomolecules.


Assuntos
Técnicas de Química Analítica/métodos , Proteínas/química , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Gases/química , Conformação Proteica
15.
Phys Chem Chem Phys ; 17(9): 6532-44, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25659944

RESUMO

Our previous temperature-cycle study reported FRET transitions between different states on FRET-labeled polyprolines [Yuan et al., PCCP, 2011, 13, 1762]. The conformational origin of such transitions, however, was left open. In this work, we apply temperature-cycle microscopy of single FRET-labeled polyproline and dsDNA molecules and compare their responses to resolve the conformational origin of different FRET states. We observe different steady-state FRET distributions and different temperature-cycle responses in the two samples. Our temperature-cycle results on single molecules resemble the results in steady-state measurements but reveal a dark state which could not be observed otherwise. By comparing the timescales and probabilities of different FRET states in temperature-cycle traces, we assign the conformational heterogeneity reflected by different FRET states to linker dynamics, dye-chain and dye-dye interactions. The dark state and low-FRET state are likely due to dye-dye interactions at short separations.


Assuntos
Microscopia/métodos , Conformação Molecular , Temperatura , Transferência Ressonante de Energia de Fluorescência
16.
Biochemistry ; 53(40): 6357-69, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25222267

RESUMO

The α-pore-forming toxin Cytolysin A (ClyA) is responsible for the hemolytic phenotype of several Escherichia coli and Salmonella enterica strains. ClyA is a soluble, 34 kDa monomer that assembles into a dodecameric pore complex in the presence of membranes or detergent. The comparison of the X-ray structures of monomeric ClyA and the ClyA protomer in the pore complex revealed one of the largest conformational transitions observed so far in proteins, involving the structural rearrangement of more than half of all residues, which is consistent with the finding that conversion from the monomer to the assembly competent protomer is rate-limiting for pore assembly. Here, we introduced artificial disulfide bonds at two distinct sites into the ClyA monomer that both prevent a specific structural rearrangement required for protomer formation. Using electron microscopy and hemolytic activity assays, we show that the engineered disulfides indeed trap these ClyA variants in an assembly incompetent state. Assembly of the variants into functional pore complexes can be completely recovered by disulfide reduction. The assembly kinetics of the ClyA variants recorded with circular dichroism and fluorescence spectroscopy revealed the same mechanism of protomer formation that was observed for wild-type ClyA, proceeding via an intermediate with decreased secondary structure content.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Hemolíticos/química , Substituição de Aminoácidos , Animais , Cristalografia por Raios X , Cistina/química , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/farmacologia , Transferência Ressonante de Energia de Fluorescência , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Hemólise , Hemolíticos/farmacologia , Cavalos , Cinética , Modelos Moleculares , Oxirredução , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
17.
J Phys Chem B ; 117(42): 13015-28, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23718771

RESUMO

Single-molecule Förster resonance energy transfer (FRET) and photoinduced electron transfer (PET) have developed into versatile and complementary methods for probing distances and dynamics in biomolecules. Here we show that the two methods can be combined in one molecule to obtain both accurate distance information and the kinetics of intramolecular contact formation. In a first step, we show that the fluorescent dyes Alexa 488 and Alexa 594, which are frequently used as a donor and acceptor for single-molecule FRET, are also suitable as PET probes with tryptophan as a fluorescence quencher. We then performed combined FRET/PET experiments with FRET donor- and acceptor-labeled polyproline peptides. The placement of a tryptophan residue into the polyglycylserine tail incorporated in the peptides allowed us to measure both FRET efficiencies and the nanosecond dynamics of contact formation between one of the fluorescent dyes and the quencher. Variation of the linker length between the polyproline and the Alexa dyes and in the position of the tryptophan residue demonstrates the sensitivity of this approach. Modeling of the combined photon statistics underlying the combined FRET and PET process enables the accurate analysis of both the resulting transfer efficiency histograms and the nanosecond fluorescence correlation functions. This approach opens up new possibilities for investigating single biomolecules with high spatial and temporal resolution.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Transporte de Elétrons , Elétrons , Hidrazinas/química , Compostos Orgânicos/química , Peptídeos/química , Peptídeos/metabolismo , Fótons , Fatores de Tempo , Triptofano/química
18.
PLoS One ; 6(5): e19791, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21629703

RESUMO

Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies.


Assuntos
Corantes/química , Transferência Ressonante de Energia de Fluorescência/métodos , Peptídeos/química , Transferência de Energia , Estrutura Molecular , Método de Monte Carlo
19.
Phys Chem Chem Phys ; 13(5): 1762-9, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21152580

RESUMO

Accessing the microsecond dynamics of a single fluorescent molecule in real time is difficult because molecular fluorescence rates usually limit the time resolution to milliseconds. We propose to apply single-molecule temperature-cycle microscopy to probe molecular dynamics at microsecond timescales. Here, we follow donor and acceptor signals of single FRET-labeled polyprolines in glycerol to investigate their conformational dynamics. We observe a steady-state FRET efficiency distribution which differs from theoretical distributions for isotropically orientated fluorescent labels. This may indicate that the orientation of fluorescent labels in glycerol is not isotropic and may reflect the influence of the dye linkers. With proper temperature-cycle parameters, we observed large FRET changes in long series of cycles of the same molecule. We attribute the main conformational changes to reorientations of the fluorescent labels with respect to the oligopeptide chain, which take place in less than a few microseconds at the highest temperature of the cycle (250 K). We were able to follow the FRET efficiency of a particular construct for more than 2000 cycles. This trajectory displays switching between two conformations, which give rise to maxima in the FRET efficiency histogram. Our experiments open the possibility to study biomolecular dynamics at a time scale of a few microseconds at the single-molecule level.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia Confocal/métodos , Peptídeos/química , Temperatura , Temperatura Baixa , Temperatura Alta , Conformação Molecular , Simulação de Dinâmica Molecular
20.
J Phys Chem B ; 114(46): 15227-35, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20964427

RESUMO

We propose a network-based method for determining basins and barriers of complex free energy surfaces (e.g., the protein folding landscape) from the time series of a single intramolecular distance. First, a network of transitions is constructed by clustering the points of the time series according to the short-time distribution of the signal. The transition network, which reflects the short-time kinetics, is then used for the iterative determination of individual basins by the minimum-cut-based free energy profile, a barrier-preserving one-dimensional projection of the free energy surface. The method is tested using the time series of a single C(ß)-C(ß) distance extracted from equilibrium molecular dynamics (MD) simulations of a structured peptide (20 residue three-stranded antiparallel ß-sheet). Although the information of only one distance is employed to describe a system with 645 degrees of freedom, both the native state and the unfolding barrier of about 10 kJ/mol are determined with remarkable accuracy. Moreover, non-native conformers are identified by comparing long-time distributions of the same distance. To examine the applicability to single-molecule Förster resonance energy transfer (FRET) experiments, a time series of donor and acceptor photons is generated using the MD trajectory. The native state of the ß-sheet peptide is determined accurately from the emulated FRET signal. Applied to real single-molecule FRET measurements on a monomeric variant of λ-repressor, the network-based method correctly identifies the folded and unfolded populations, which are clearly separated in the minimum-cut-based free energy profile.


Assuntos
Peptídeos/química , Conformação Proteica , Termodinâmica , Transferência Ressonante de Energia de Fluorescência/métodos , Cinética , Simulação de Dinâmica Molecular , Desnaturação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA