Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Cell Chem Biol ; 30(1): 43-54.e8, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36529140

RESUMO

The mono-ADP-ribosyltransferase PARP7 has emerged as a key negative regulator of cytosolic NA-sensors of the innate immune system. We apply a rational design strategy for converting a pan-PARP inhibitor into a potent selective PARP7 inhibitor (KMR-206). Consistent with studies using the structurally distinct PARP7 inhibitor RBN-2397, co-treatment of mouse embryonic fibroblasts with KMR-206 and NA-sensor ligands synergistically induced the expression of the type I interferon, IFN-ß. In mouse colon carcinoma (CT-26) cells, KMR-206 alone induced IFN-ß. Both KMR-206 and RBN-2397 increased PARP7 protein levels in CT-26 cells, demonstrating that PARP7's catalytic activity regulates its own protein levels. Curiously, treatment with saturating doses of KMR-206 and RBN-2397 achieved different levels of PARP7 protein, which correlated with the magnitude of type I interferon gene expression. These latter results have important implications for the mechanism of action of PARP7 inhibitors and highlights the usefulness of having structurally distinct chemical probes for the same target.


Assuntos
Antineoplásicos , Interferon Tipo I , Ácidos Nucleicos , Animais , Camundongos , Fibroblastos , Transdução de Sinais
2.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362203

RESUMO

Elevated levels of matrix metalloprotease 9 (MMP-9) and neutrophil elastase (NE) are associated with bronchiectasis and lung function decline in patients with cystic fibrosis (CF). MMP-9 is a potent extracellular matrix-degrading enzyme which is activated by NE and has been implicated in structural lung damage in CF. However, the role of MMP-9 in the in vivo pathogenesis of CF lung disease is not well understood. Therefore, we used ß-epithelial Na+ channel-overexpressing transgenic (ßENaC-Tg) mice as a model of CF-like lung disease and determined the effect of genetic deletion of Mmp9 (Mmp9-/-) on key aspects of the pulmonary phenotype. We found that MMP-9 levels were elevated in the lungs of ßENaC-Tg mice compared with wild-type littermates. Deletion of Mmp9 had no effect on spontaneous mortality, inflammatory markers in bronchoalveolar lavage, goblet cell metaplasia, mucus hypersecretion and emphysema-like structural lung damage, while it partially reduced mucus obstruction in ßENaC-Tg mice. Further, lack of Mmp9 had no effect on increased inspiratory capacity and increased lung compliance in ßENaC-Tg mice, whereas both lung function parameters were improved with genetic deletion of NE. We conclude that MMP-9 does not play a major role in the in vivo pathogenesis of CF-like lung disease in mice.


Assuntos
Fibrose Cística , Animais , Camundongos , Fibrose Cística/complicações , Canais Epiteliais de Sódio/genética , Inflamação/patologia , Pulmão/patologia , Metaloproteinase 9 da Matriz/genética , Camundongos Transgênicos
3.
PLoS One ; 17(10): e0276204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282849

RESUMO

Open data platforms are interfaces between data demand of and supply from their users. Yet, data platform providers frequently struggle to aggregate data to suit their users' needs and to establish a high intensity of data exchange in a collaborative environment. Here, using open life science data platforms as an example for a diverse data structure, we systematically categorize these platforms based on their technology intermediation and the range of domains they cover to derive general and specific success factors for their management instruments. Our qualitative content analysis is based on 39 in-depth interviews with experts employed by data platforms and external stakeholders. We thus complement peer initiatives which focus solely on data quality, by additionally highlighting the data platforms' role to enable data utilization for innovative output. Based on our analysis, we propose a clearly structured and detailed guideline for seven management instruments. This guideline helps to establish and operationalize data platforms and to best exploit the data provided. Our findings support further exploitation of the open innovation potential in the life sciences and beyond.


Assuntos
Disciplinas das Ciências Biológicas , Humanos , Cuidados Paliativos , Tecnologia
4.
J Cyst Fibros ; 21(6): 967-976, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35732550

RESUMO

BACKGROUND: Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS: Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS: Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION: Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.


Assuntos
Fibrose Cística , Criança , Humanos , Receptor de Morte Celular Programada 1 , Pulmão , Inflamação , Bactérias/metabolismo , Biomarcadores/metabolismo , Macrófagos
5.
Front Microbiol ; 13: 885822, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35633718

RESUMO

Airway inflammation and microbiome dysbiosis are hallmarks of cystic fibrosis (CF) lung disease. However, longitudinal studies are needed to decipher which factors contribute to the long-term evolution of these key features of CF. We therefore evaluated the relationship between fluctuation in microbiome and inflammatory parameters in a longitudinal study including a short- (1-year) and a long-term (3+ years) period. We collected 118 sputum samples from 26 CF adult patients and analyzed them by 16S rRNA gene sequencing. We measured the levels of inflammatory cytokines, neutrophil elastase, and anti-proteinases; lung function (FEV1% predicted); and BMI. The longitudinal evolution was analyzed based on (i) the rates of changes; (ii) the intra-patient stability of the variables; and (iii) the dependency of the rates of changes on the baseline values. We observed that the diversity of the microbiome was highly variable over a 1-year period, while the inflammatory markers showed a slower evolution, with significant changes only observed in the 3+ year cohort. Further, the degree of fluctuation of the biomass and the dominance of the microbiome were associated with changes in inflammatory markers, especially IL-1ß and IL-8. This longitudinal study demonstrates for the first time that the long-term establishment and periodical variation of the abundance of a dominant pathogen is associated with a more severe increase in inflammation. This result indicates that a single time point or 1-year study might fail to reveal the correlation between microbial evolution and clinical degradation in cystic fibrosis.

6.
EMBO J ; 41(9): e109352, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35318705

RESUMO

Neural circuit function requires mechanisms for controlling neurotransmitter release and the activity of neuronal networks, including modulation by synaptic contacts, synaptic plasticity, and homeostatic scaling. However, how neurons intrinsically monitor and feedback control presynaptic neurotransmitter release and synaptic vesicle (SV) recycling to restrict neuronal network activity remains poorly understood at the molecular level. Here, we investigated the reciprocal interplay between neuronal endosomes, organelles of central importance for the function of synapses, and synaptic activity. We show that elevated neuronal activity represses the synthesis of endosomal lipid phosphatidylinositol 3-phosphate [PI(3)P] by the lipid kinase VPS34. Neuronal activity in turn is regulated by endosomal PI(3)P, the depletion of which reduces neurotransmission as a consequence of perturbed SV endocytosis. We find that this mechanism involves Calpain 2-mediated hyperactivation of Cdk5 downstream of receptor- and activity-dependent calcium influx. Our results unravel an unexpected function for PI(3)P-containing neuronal endosomes in the control of presynaptic vesicle cycling and neurotransmission, which may explain the involvement of the PI(3)P-producing VPS34 kinase in neurological disease and neurodegeneration.


Assuntos
Transmissão Sináptica , Vesículas Sinápticas , Endocitose/fisiologia , Endossomos , Neurotransmissores , Fosfatos de Fosfatidilinositol , Sinapses/fisiologia , Transmissão Sináptica/fisiologia
7.
Physiol Rep ; 10(1): e15159, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001557

RESUMO

ATP has been previously identified as an autocrine signaling factor that is co-released with insulin to modulate and propagate ß-cell activity within islets of Langerhans. Here, we show that ß-cell activity and insulin secretion essentially rely on the presence of extracellular ATP. For this, we monitored changes of the intracellular Ca2+ concentration ([Ca2+ ]i oscillations) as an immediate read-out for insulin secretion in live cell experiments. Extensive washing of cells or depletion of extracellular ATP levels by recombinant apyrase reduced [Ca2+ ]i oscillations and insulin secretion in pancreatic cell lines and primary ß-cells. Following ATP depletion, [Ca2+ ]i oscillations were stimulated by the replenishment of ATP in a concentration-dependent manner. Inhibition of endogenous ecto-ATP nucleotidases increased extracellular ATP levels, along with [Ca2+ ]i oscillations and insulin secretion, indicating that there is a constant supply of ATP to the extracellular space. Our combined results demonstrate that extracellular ATP is essential for ß-cell activity. The presented work suggests extracellular ATPases as potential drug targets for the modulation of insulin release. We further found that exogenous fatty acids compensated for depleted extracellular ATP levels by the recovery of [Ca2+ ]i oscillations, indicating that autocrine factors mutually compensate for the loss of others. Thereby, our results contribute to a more detailed and complete understanding of the general role of autocrine signaling factors as a fundamental regulatory mechanism of ß-cell activity and insulin secretion.


Assuntos
Ilhotas Pancreáticas , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais
8.
ACS Chem Biol ; 16(11): 2174-2184, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34726893

RESUMO

Channel-activating proteases (CAPs) play a fundamental role in the regulation of sodium transport across epithelial tissues mainly via cleavage-mediated fine-tuning of the activity of the epithelial sodium channel (ENaC). Hyperactivity of CAPs and subsequently increased ENaC activity have been associated with various diseases, including cystic fibrosis (CF). To date, there is only a limited number of tools available to investigate CAP activity. Here, we developed ratiometric, peptide-based Förster resonance energy transfer (FRET) reporters useful to visualize and quantify the activity of ectopic serine proteases including the CAPs prostasin and matriptase in human and murine samples in a temporally and spatially resolved manner. Lipidated varieties were inserted into the outer leaflet of the plasma membrane to detect enzyme activity on the surface of individual cells, that is, close to the protease substrates. The FRET reporters (termed CAPRee) selectively detected the activity of ectopic serine proteases such as CAPs in solution and on the surface of human and murine cells. We found increased CAP activity on the surface of cells with a genetic background of CF. The new reporters will contribute to a better understanding of ectopic serine protease activity and their regulation under physiological and pathophysiological conditions.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Animais , Transporte Biológico , Linhagem Celular , Humanos , Camundongos , Inibidores de Serina Proteinase/química , Especificidade por Substrato
9.
Chem Phys Lipids ; 241: 105124, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509466

RESUMO

To deliver charged lipid derivatives to the cell interior, bioactivatable and photo-activatable protecting groups are frequently used. The intracellular metabolism of the protecting groups, as well as the lipid itself, are key factors that determine biological activity. Here we followed the cellular metabolism of cell-permeant photo-activatable ("caged") and non-caged membrane-permeant analogs of dioctanoyl phosphatidylinositol 3,4,5-trisphosphate (diC8PIP3) carrying biodegradable protecting groups by mass spectrometry. After successful cell entry, the photo-activatable group can be removed on demand by a light pulse. Hence, UV irradiation acts as a switch to expose the cellular metabolism to a bolus of active compound. To investigate lipid metabolites and to capture a more complete metabolome, we adapted standard extraction methods and employed multi-reaction monitoring mass spectrometry (MRM-MS). This required a previously developed permethylation method that stabilized metabolites and enhanced volatility of the phosphoinositide metabolites. The mass spectrometric analysis allowed for the monitoring of the intracellular removal of photo-activatable caging as well as biodegradable protecting groups from the membrane-permeant phosphoinositides along with cellular turnover, namely by dephosphorylation. We found that phosphate masking groups, namely acetoxymethyl esters, were rapidly removed by endogenous enzymes while butyrates masking hydroxy groups showed a longer lifetime, giving rise to trapped intermediates. We further identified key intermediate metabolites and demonstrated the beneficial effect of caging groups and their removal on the formation of favorable metabolites. Surprisingly, caging and protecting groups were found to influence each other's stability.


Assuntos
Fosfatos de Fosfatidilinositol/metabolismo , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/isolamento & purificação , Células Tumorais Cultivadas
10.
Angew Chem Int Ed Engl ; 60(36): 19759-19765, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075669

RESUMO

We synthesized the first multifunctionalized phosphoinositide polyphosphate derivatives featuring a photo-removable protecting group ("cage"), a photo-crosslinkable diazirine group, and a terminal alkyne group useful for click chemistry. We demonstrate that the lipid derivatives readily enter cells. After photo-crosslinking, cell fixation and fluorescent tagging via click chemistry, we determined the intracellular location of the lipid derivatives before and after uncaging of the lipids. We find that there is rapid trafficking of PI(3,4)P2 and PI(3,4,5)P3 derivatives to the plasma membrane, opening the intriguing possibility that there is active transport of these lipids involved. We employed the photo-crosslinking and click chemistry functions to analyze the proteome of PI(3,4,5)P3 -binding proteins. From the latter, we validated by RNAi that the putative lipid binding proteins ATP11A and MPP6 are involved in the transport of PI(3,4,5)P3 to the plasma membrane.


Assuntos
Fosfatidilinositóis/metabolismo , Polifosfatos/metabolismo , Células HeLa , Humanos , Estrutura Molecular , Fosfatidilinositóis/síntese química , Fosfatidilinositóis/química , Polifosfatos/síntese química , Polifosfatos/química
11.
J Vis Exp ; (171)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34096915

RESUMO

Proteases are regulators of countless physiological processes and the precise investigation of their activities remains an intriguing biomedical challenge. Among the ~600 proteases encoded by the human genome, neutrophil serine proteases (NSPs) are thoroughly investigated for their involvement in the onset and progression of inflammatory conditions including respiratory diseases. Uniquely, secreted NSPs not only diffuse within extracellular fluids but also localize to plasma membranes. During neutrophil extracellular trap (NETs) formation, NSPs become an integral part of the secreted chromatin. Such complex behavior renders the understanding of NSPs pathophysiology a challenging task. Here, detailed protocols are shown to visualize, quantify and discriminate free and membrane-bound neutrophil elastase (NE) and cathepsin G (CG) activities in sputum samples. NE and CG are NSPs whose activities have pleiotropic roles in the pathogenesis of cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD): they promote tissue remodeling, regulate downstream immune responses and correlate with lung disease severity. The protocols show how to separate fluid and cellular fraction, as well as the isolation of neutrophils from human sputum for enzymatic activity quantification via small-molecule Förster resonance energy transfer-based (FRET) reporters. To gather specific insights into the relative role of NE and CG activities, a FRET readout can be measured by different technologies: i) in vitro plate reader measurements allow for high-throughput and bulk detection of protease activity; ii) confocal microscopy spatiotemporally resolves membrane-bound activity at the cell surface; iii) small-molecule FRET flow cytometry enables for the rapid evaluation of anti-inflammatory treatments via single-cell protease activity quantification and phenotyping. The implementation of such methods opens the doors to explore NSPs pathobiology and their potential as biomarkers of disease severity for CF and COPD. Given their standardization potential, their robust readout and simplicity of transfer, the described techniques are immediately shareable for implementation across research and diagnostic laboratories.


Assuntos
Catepsina G , Fibrose Cística , Elastase de Leucócito , Doença Pulmonar Obstrutiva Crônica , Fibrose Cística/enzimologia , Humanos , Neutrófilos/enzimologia , Doença Pulmonar Obstrutiva Crônica/enzimologia , Serina Proteases , Escarro/enzimologia
12.
J Cyst Fibros ; 20(5): 754-760, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33431308

RESUMO

Airway dysbiosis has been associated with lung disease severity in patients with cystic fibrosis (CF). However, the relationship between dysbiosis, airway inflammation and lung function impairement remains poorly understood. The aim of this study was therefore to determine how the structure of the sputum microbiota, airway inflammation markers and spirometry are related in patients with CF. Sputum samples were collected from 106 CF patients between 12 and 72 years. These were analyzed by 16S rRNA gene amplicon sequencing. Moreover, levels of pro-inflammatory cytokines (IL-1ß, IL-8, IL-6 and TNF-α) and Neutrophil elastase (NE) were determined. The relationship between the microbiota, inflammation markers and forced expiratory volume in one second percent predicted (FEV1% predicted) was evaluated by multi-parameter analysis. The microbiota α-diversity correlated inverse with inflammation markers IL-1ß, IL-8, TNF-α, NE and positively with FEV1% predicted. Patients could be divided into 7 clusters based on their microbiota structure. The most diverse cluster was defined by oropharyngeal-like flora (OF) while the others were characterized by the dominance of a single pathogen. Patients with the diverse OF microbiota cluster had lower sputum inflammatory markers and higher FEV1% predicted compared to patients with a pathogen-dominated microbiota including Pseudomonas aeruginosa. Our results suggest that the diversity of the airway microbiota is an important biomarker of the severity of airway inflammation linking dysbiosis to lung function decline in patients with CF.


Assuntos
Fibrose Cística/microbiologia , Fibrose Cística/fisiopatologia , Disbiose/microbiologia , Disbiose/fisiopatologia , Inflamação/microbiologia , Inflamação/fisiopatologia , Adolescente , Adulto , Idoso , Biomarcadores , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Escarro/microbiologia , Adulto Jovem
13.
Eur Respir J ; 57(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33303549

RESUMO

BACKGROUND: Elevated levels of interleukin (IL)-17A were detected in the airways of patients with cystic fibrosis (CF), but its cellular sources and role in the pathogenesis of CF lung disease remain poorly understood. The aim of this study was to determine the sources of IL-17A and its role in airway inflammation and lung damage in CF. METHODS: We performed flow cytometry to identify IL-17A-producing cells in lungs and peripheral blood from CF patients and ß-epithelial Na+ channel transgenic (Scnn1b-Tg) mice with CF-like lung disease, and determined the effects of genetic deletion of Il17a and Rag1 on the pulmonary phenotype of Scnn1b-Tg mice. RESULTS: T-helper 17 cells, CD3+CD8+ T-cells, γδ T-cells, invariant natural killer T-cells and innate lymphoid cells contribute to IL-17A secretion in lung tissue, lymph nodes and peripheral blood of patients with CF. Scnn1b-Tg mice displayed increased pulmonary expression of Il17a and elevated IL-17A-producing innate and adaptive lymphocytes with a major contribution by γδ T-cells. Lack of IL-17A, but not the recombination activating protein RAG1, reduced neutrophilic airway inflammation in Scnn1b-Tg mice. Genetic deletion of Il17a or Rag1 had no effect on mucus obstruction, but reduced structural lung damage and revealed an IL-17A-dependent macrophage activation in Scnn1b-Tg mice. CONCLUSIONS: We identify innate and adaptive sources of IL-17A in CF lung disease. Our data demonstrate that IL-17A contributes to airway neutrophilia, macrophage activation and structural lung damage in CF-like lung disease in mice. These results suggest IL-17A as a novel target for anti-inflammatory therapy of CF lung disease.


Assuntos
Fibrose Cística , Animais , Linfócitos T CD8-Positivos , Modelos Animais de Doenças , Humanos , Imunidade Inata , Inflamação , Interleucina-17 , Pulmão , Linfócitos , Camundongos , Camundongos Endogâmicos C57BL
14.
Cell Chem Biol ; 28(1): 88-96.e3, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33147441

RESUMO

Pharmacological treatment of pancreatic ß cells targeting cannabinoid receptors 1 and 2 (CB1 and CB2) has been shown to result in significant effects on insulin release, possibly by modulating intracellular calcium levels ([Ca2+]i). It is unclear how the interplay of CB1 and CB2 affects insulin secretion. Here, we demonstrate by the use of highly specific receptor antagonists and the recently developed photo-releasable endocannabinoid 2-arachidonoylglycerol that both receptors have counteracting effects on cytosolic calcium oscillations. We further show that both receptors are juxtaposed in a way that increases [Ca2+]i oscillations in silent ß cells but dampens them in active ones. This study highlights a functional role of CB1 and CB2 acting in concert as a compensator/attenuator switch for regulating ß cell excitability.


Assuntos
Cálcio/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Linhagem Celular Tumoral , Humanos
15.
EMBO Rep ; 21(12): e51462, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33140520

RESUMO

The ER-bound kinase/endoribonuclease (RNase), inositol-requiring enzyme-1 (IRE1), regulates the phylogenetically most conserved arm of the unfolded protein response (UPR). However, the complex biology and pathology regulated by mammalian IRE1 cannot be fully explained by IRE1's one known, specific RNA target, X box-binding protein-1 (XBP1) or the RNA substrates of IRE1-dependent RNA degradation (RIDD) activity. Investigating other specific substrates of IRE1 kinase and RNase activities may illuminate how it performs these diverse functions in mammalian cells. We report that macrophage IRE1 plays an unprecedented role in regulating phosphatidylinositide-derived signaling lipid metabolites and has profound impact on the downstream signaling mediated by the mammalian target of rapamycin (mTOR). This cross-talk between UPR and mTOR pathways occurs through the unconventional maturation of microRNA (miR) 2137 by IRE1's RNase activity. Furthermore, phosphatidylinositol (3,4,5) phosphate (PI(3,4,5)P3 ) 5-phosphatase-2 (INPPL1) is a direct target of miR-2137, which controls PI(3,4,5)P3 levels in macrophages. The modulation of cellular PI(3,4,5)P3 /PIP2 ratio and anabolic mTOR signaling by the IRE1-induced miR-2137 demonstrates how the ER can provide a critical input into cell growth decisions.


Assuntos
Estresse do Retículo Endoplasmático , Fosfatidilinositóis , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Inositol , Macrófagos/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas
16.
J Am Chem Soc ; 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33186023

RESUMO

Neutrophil extracellular traps (NETs) consist of DNA released by terminally stimulated neutrophils. They fine-tune inflammation, kill pathogens, activate macrophages, contribute to airway mucus obstruction in cystic fibrosis, and facilitate tumor metastasis after dormancy. Neutrophil proteases such as elastase (NE) and cathepsin G (CG) attach to NETs and contribute to the diverse immune outcome. However, because of the lack of suitable tools, little spatiotemporal information on protease activities on NETs is available in a pathophysiological context to date. Here, we present H-NE and H-CG, two FRET-based reporters armed with a DNA minor groove binder, which monitor DNA-bound NE and CG activity, respectively. The probes revealed that only NE maintains its catalytic ability when localized to DNA. Further, we demonstrated elevated protease activity within the extracellular DNA of sputum from cystic fibrosis patients. Finally, H-NE showed NE activity at single-cell and free DNA resolution within mouse lung slices, a difficult to achieve task with available substrate-based reporters.

17.
Heliyon ; 6(5): e03910, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32420483

RESUMO

A fundamental feature of tumor progression is reprogramming of metabolic pathways. ATP citrate lyase (ACLY) is a key metabolic enzyme that catalyzes the generation of Acetyl-CoA and is upregulated in cancer cells and required for their growth. The phosphoinositide 3-kinase (PI3K) and Src-family kinase (SFK) Lyn are constitutively activate in many cancers. We show here, for the first time, that both the substrate and product of PI3K, phosphatidylinositol-(4,5)-bisphosphate (PIP2) and phosphatidylinositol-(3,4,5)-trisphosphate (PIP3), respectively, bind to ACLY in Acute Myeloid Leukemia (AML) patient-derived, but not normal donor-derived cells. We demonstrate the binding of PIP2 to the CoA-binding domain of ACLY and identify the six tyrosine residues of ACLY that are phosphorylated by Lyn. Three of them (Y682, Y252, Y227) can be also phosphorylated by Src and they are located in catalytic, citrate binding and ATP binding domains, respectively. PI3K and Lyn inhibitors reduce the ACLY enzyme activity, ACLY-mediated Acetyl-CoA synthesis, phospholipid synthesis, histone acetylation and cell growth. Thus, PIP2/PIP3 binding and Src tyrosine kinases-mediated stimulation of ACLY links oncogenic pathways to Acetyl-CoA-dependent pro-growth and survival metabolic pathways in cancer cells. These results indicate a novel function for Lyn, as a regulator of Acetyl-CoA-mediated metabolic pathways.

19.
J Biol Chem ; 295(4): 1091-1104, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31831620

RESUMO

Phosphoinositides play crucial roles in intracellular membrane dynamics and cell signaling, with phosphatidylinositol (PI) 3-phosphates being the predominant phosphoinositide lipids at endosomes and lysosomes, whereas PI 4-phosphates, such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), are enriched at the cell surface including sites of endocytosis. How PI 4-phosphates and PI 3-phosphates are dynamically interconverted within the endocytic pathway and how this is controlled in space and time remains poorly understood. Here, combining live imaging, genome engineering, and acute chemical and genetic manipulations, we found that local synthesis of PI(3,4)P2 by phosphatidylinositol 3-kinase C2α at plasma membrane clathrin-coated pits is spatially segregated from its hydrolysis by the PI(3,4)P2-specific inositol polyphosphate 4-phosphatase 4A (INPP4A). We observed that INPP4A is dispensable for clathrin-mediated endocytosis and is undetectable in endocytic clathrin-coated pits. Instead, we found that INPP4A partially localizes to endosomes and that loss of INPP4A in HAP1 cancer cells perturbs signaling via AKT kinase and mTOR complex 1. These results reveal a function for INPP4-mediated PI(3,4)P2 hydrolysis in local regulation of growth factor and nutrient signals at endosomes in cancer cells. They further suggest a model whereby synthesis and turnover of PI(3,4)P2 are spatially segregated within the endocytic pathway to couple endocytic membrane traffic to growth factor and nutrient signaling.


Assuntos
Endocitose , Fosfatos de Fosfatidilinositol/biossíntese , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Endossomos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
20.
Sci Rep ; 9(1): 17661, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776383

RESUMO

Human immunodeficiency virus type 1 (HIV-1) acquires its lipid envelope during budding from the plasma membrane of the host cell. Various studies indicated that HIV-1 membranes differ from producer cell plasma membranes, suggesting budding from specialized membrane microdomains. The phosphoinositide PI(4,5)P2 has been of particular interest since PI(4,5)P2 is needed to recruit the viral structural polyprotein Gag to the plasma membrane and thus facilitates viral morphogenesis. While there is evidence for an enrichment of PIP2 in HIV-1, fully quantitative analysis of all phosphoinositides remains technically challenging and therefore has not been reported, yet. Here, we present a comprehensive analysis of the lipid content of HIV-1 and of plasma membranes from infected and non-infected producer cells, resulting in a total of 478 quantified lipid compounds, including molecular species distribution of 25 different lipid classes. Quantitative analyses of phosphoinositides revealed strong enrichment of PIP2, but also of PIP3, in the viral compared to the producer cell plasma membrane. We calculated an average of ca. 8,000 PIP2 molecules per HIV-1 particle, three times more than Gag. We speculate that the high density of PIP2 at the HIV-1 assembly site is mediated by transient interactions with viral Gag polyproteins, facilitating PIP2 concentration in this microdomain. These results are consistent with our previous observation that PIP2 is not only required for recruiting, but also for stably maintaining Gag at the plasma membrane. We believe that this quantitative analysis of the molecular anatomy of the HIV-1 lipid envelope may serve as standard reference for future investigations.


Assuntos
Membrana Celular/química , HIV-1/química , Fosfatidilinositol 4,5-Difosfato/análise , Fosfatidilinositóis/análise , HIV-1/ultraestrutura , Humanos , Lipídeos/análise , Microdomínios da Membrana , Fosfatidilinositóis/metabolismo , Montagem de Vírus , Liberação de Vírus , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA