Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 12(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39062021

RESUMO

Fibromyalgia (FM) is a chronic central sensitivity syndrome characterized by augmented pain processing at diffuse body sites and presents as a multimorbid clinical condition. Long COVID (LC) is a heterogenous clinical syndrome that affects 10-20% of individuals following COVID-19 infection. FM and LC share similarities with regard to the pain and other clinical symptoms experienced, thereby posing a challenge for accurate diagnosis. This research explores the feasibility of using surface-enhanced Raman spectroscopy (SERS) combined with soft independent modelling of class analogies (SIMCAs) to develop classification models differentiating LC and FM. Venous blood samples were collected using two supports, dried bloodspot cards (DBS, n = 48 FM and n = 46 LC) and volumetric absorptive micro-sampling tips (VAMS, n = 39 FM and n = 39 LC). A semi-permeable membrane (10 kDa) was used to extract low molecular fraction (LMF) from the blood samples, and Raman spectra were acquired using SERS with gold nanoparticles (AuNPs). Soft independent modelling of class analogy (SIMCA) models developed with spectral data of blood samples collected in VAMS tips showed superior performance with a validation performance of 100% accuracy, sensitivity, and specificity, achieving an excellent classification accuracy of 0.86 area under the curve (AUC). Amide groups, aromatic and acidic amino acids were responsible for the discrimination patterns among FM and LC syndromes, emphasizing the findings from our previous studies. Overall, our results demonstrate the ability of AuNP SERS to identify unique metabolites that can be potentially used as spectral biomarkers to differentiate FM and LC.

2.
Biomedicines ; 12(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38255238

RESUMO

Fibromyalgia (FM) is a chronic muscle pain disorder that shares several clinical features with other related rheumatologic disorders. This study investigates the feasibility of using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles (AuNPs) as a fingerprinting approach to diagnose FM and other rheumatic diseases such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), osteoarthritis (OA), and chronic low back pain (CLBP). Blood samples were obtained on protein saver cards from FM (n = 83), non-FM (n = 54), and healthy (NC, n = 9) subjects. A semi-permeable membrane filtration method was used to obtain low-molecular-weight fraction (LMF) serum of the blood samples. SERS measurement conditions were standardized to enhance the LMF signal. An OPLS-DA algorithm created using the spectral region 750 to 1720 cm-1 enabled the classification of the spectra into their corresponding FM and non-FM classes (Rcv > 0.99) with 100% accuracy, sensitivity, and specificity. The OPLS-DA regression plot indicated that spectral regions associated with amino acids were responsible for discrimination patterns and can be potentially used as spectral biomarkers to differentiate FM and other rheumatic diseases. This exploratory work suggests that the AuNP SERS method in combination with OPLS-DA analysis has great potential for the label-free diagnosis of FM.

3.
ACS Sens ; 8(12): 4636-4645, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37988612

RESUMO

Integrins are cellular surface receptors responsible for the activation of many cellular pathways in cancer. These integrin proteins can be specifically targeted by small peptide sequences that offer the potential for the differentiation of cellular subpopulations by using magnetically assisted cellular sorting techniques. By adding a gold shell to the magnetic nanoparticles, these integrin-peptide interactions can be differentiated by surface-enhanced Raman spectroscopy (SERS), providing a quick and reliable method for on-target binding. In this paper, we demonstrate the ability to differentiate the peptide-protein interactions of the small peptides CDPGYIGSR and cyclic RGDfC functionalized on gold-coated magnetic nanoparticles with the integrins they are known to bind to using their SERS signal. SW480 and SW620 colorectal cancer cells known to have the integrins of interest were then magnetically sorted using these functionalized nanoparticles, suggesting differentiation between the sorted populations and integrin populations among the two cell lines.


Assuntos
Nanopartículas Metálicas , Neoplasias , Receptores de Superfície Celular , Ouro/química , Integrinas , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Peptídeos , Linhagem Celular Tumoral , Humanos
4.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993759

RESUMO

Extracellular vesicles (EVs) have emerged as promising diagnostic and therapeutic candidates in many biomedical applications. However, EV research continues to rely heavily on in vitro cell cultures for EV production, where the exogenous EVs present in fetal bovine (FBS) or other required serum supplementation can be difficult to remove entirely. Despite this and other potential applications involving EV mixtures, there are currently no rapid, robust, inexpensive, and label-free methods for determining the relative concentrations of different EV subpopulations within a sample. In this study, we demonstrate that surface-enhanced Raman spectroscopy (SERS) can biochemically fingerprint fetal bovine serum-derived and bioreactor-produced EVs, and after applying a novel manifold learning technique to the acquired spectra, enables the quantitative detection of the relative amounts of different EV populations within an unknown sample. We first developed this method using known ratios of Rhodamine B to Rhodamine 6G, then using known ratios of FBS EVs to breast cancer EVs from a bioreactor culture. In addition to quantifying EV mixtures, the proposed deep learning architecture provides some knowledge discovery capabilities which we demonstrate by applying it to dynamic Raman spectra of a chemical milling process. This label-free characterization and analytical approach should translate well to other EV SERS applications, such as monitoring the integrity of semipermeable membranes within EV bioreactors, ensuring the quality or potency of diagnostic or therapeutic EVs, determining relative amounts of EVs produced in complex co-culture systems, as well as many Raman spectroscopy applications.

5.
ACS Meas Sci Au ; 2(4): 332-341, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35996539

RESUMO

High spatial resolution imaging and chemical-specific detection in living organisms is important in a wide range of fields from medicine to catalysis. In this work, we characterize a wide-field surface-enhanced Raman scattering (SERS) imaging approach capable of simultaneously capturing images and SERS spectra from nanoparticle SERS tags in cancer cells. By passing the image through a transmission diffraction grating before it reaches an array detector, we record the image and wavelength dispersed signal simultaneously on the camera sensor. Optimization of the experiment provides an approach with better spectral resolution and more rapid acquisition than liquid crystal tunable filters commonly used for wide-field SERS imaging. Intensity fluctuations inherent to SERS enabled localization algorithms to be applied to both the spatial and spectral domain, providing super-resolution SERS images that are correlated with improved peak positions identified in the spectrum of the SERS tag. The detected Raman signal is shown to be sensitive to the focal plane, providing three-dimensional (3D) sectioning abilities for the detected nanoparticles. Our work demonstrates spectrally resolved super-resolution SERS imaging that has the potential to be applied to complex physical and biological imaging applications.

6.
Langmuir ; 38(31): 9466-9480, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35899940

RESUMO

Fouling at interfaces deteriorates the efficiency and hygiene of processes within numerous industrial sectors, including the oil and gas, biomedical device, and food industries. In the food industry, the fouling of a complex food matrix to a heated stainless steel surface reduces production efficiency by increasing heating resistance, pumping requirements, and the frequency of cleaning operations. In this work, quartz crystal microbalance with dissipation (QCM-D) was used to study the interface formed by the fouling of milk on a stainless steel surface at different flow rates and protein concentrations at high temperatures (135 °C). Subsequently, the QCM-D response was recorded during the cleaning of the foulant. Two phases of fouling were identified. During phase-1, the fouling rate was dependent on the flow rate, while the fouling rate during phase-2 was dependent on the flow rate and protein concentration. During cleaning, foulants deposited at the higher flow rate swelled more than those deposited at the lower flow rate. The composition of the fouling deposits consisted of both protein and mineral species. Two crystalline phases of calcium phosphate, ß-tricalcium phosphate and hydroxyapatite, were identified at both flow rates. Stratification in topography was observed across the surface of the QCM-D sensor with a brittle and cracked structure for deposits formed at 0.2 mL/min and a smooth and close-packed structure for deposits formed at 0.1 mL/min. These stratifications in the composition and topography were correlated to differences in the reaction time and flow dynamics at different flow rates. This high-temperature application of QCM-D to complex food systems illuminates the initial interaction between proteins and minerals and a stainless steel surface, which might otherwise be undetectable in low-temperature applications of QCM-D or at larger bench and industrial scales. The methods and results presented here have implications for optimizing processing scenarios that limit fouling formation while also enhancing removal during cleaning.


Assuntos
Técnicas de Microbalança de Cristal de Quartzo , Aço Inoxidável , Animais , Temperatura Alta , Leite , Aço Inoxidável/química , Temperatura
7.
Anal Chem ; 94(12): 5106-5112, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35289593

RESUMO

The ability to monitor the uptake and distribution of food nutrients in in vitro cell culture models is key to understanding the efficacy of these nutraceuticals to treat and prevent disease. Lycopene is a carotenoid found in chloroplasts and chromoplasts of tomatoes, providing the familiar red color, and a bioactive that inhibits prostate carcinogenesis. We employed live-cell Raman microscopy to visualize lycopene delivery from tween 80 micelles into PC-3 prostate cancer cells. The tween 80 micelle provides a mimic of natural lipoprotein complexes that deliver lycopene in vivo, overcomes the low aqueous solubility of lycopene and challenges replicating physiological uptake to cells, and provides a stable signal to assess cellular uptake of the nutraceutical formulation. The Raman images indicate subcellular localization of the lycopene within the cells. The lycopene Raman signal is resonantly enhanced at an excitation wavelength of 532 nm, providing a convenient, sensitive, and label-free technique to detect and quantify lycopene uptake in living cells. Analysis of the acquired Raman spectra in the maps determines the concentration of lycopene at each point in the cell. In addition to the expected lycopene Raman signal, Raman scattering from the tween 80 vehicle is also mapped in the cells. The Raman data correlates with scattering features observed in darkfield microscopy images of the cells, which display the cell membrane and other features for reference. Overall, the Raman maps indicate lycopene likely accumulates in lipid membranes of cytoplasmic organelles.


Assuntos
Próstata , Neoplasias da Próstata , Carotenoides , Diagnóstico por Imagem , Humanos , Licopeno , Masculino , Próstata/metabolismo , Neoplasias da Próstata/diagnóstico por imagem
8.
ACS Sens ; 6(9): 3436-3444, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34491043

RESUMO

COVID-19 remains an ongoing issue across the globe, highlighting the need for a rapid, selective, and accurate sensor for SARS-CoV-2 and its emerging variants. The chemical specificity and signal amplification of surface-enhanced Raman spectroscopy (SERS) could be advantageous for developing a quantitative assay for SARS-CoV-2 with improved speed and accuracy over current testing methods. Here, we have tackled the challenges associated with SERS detection of viruses. As viruses are large, multicomponent species, they can yield different SERS signals, but also other abundant biomolecules present in the sample can generate undesired signals. To improve selectivity in complex biological environments, we have employed peptides as capture probes for viral proteins and developed an angiotensin-converting enzyme 2 (ACE2) mimetic peptide-based SERS sensor for SARS-CoV-2. The unique vibrational signature of the spike protein bound to the peptide-modified surface is identified and used to construct a multivariate calibration model for quantification. The sensor demonstrates a 300 nM limit of detection and high selectivity in the presence of excess bovine serum albumin. This work provides the basis for designing a SERS-based assay for the detection of SARS-CoV-2 as well as engineering SERS biosensors for other viruses in the future.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Peptídeos , SARS-CoV-2 , Análise Espectral Raman
9.
Appl Spectrosc ; 74(11): 1423-1432, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32731744

RESUMO

Measurements of cellular pH are used to infer information such as stage of cell cycle, presence of cancer and other diseases, as well as delivery or effect of a therapeutic drug. Surface-enhanced Raman spectroscopy (SERS) of nanoparticle-based pH probes have been used to interrogate intracellular pH, with the significant advantage of avoiding photobleaching compared to fluorescent indicators. 4-Mercaptobenzoic acid (MBA) is a commonly used pH-sensitive reporter molecule. Intracellular pH sensing by SERS requires analysis of the observed MBA spectrum and spectral interference can affect the pH determination. Background from common cell containers, imaging too few particles, signal-to-noise ratios, and degradation of reporter molecules are among the factors that may alter appropriate SERS-based pH determination in cells. Here, we have compared common methods of spectral analysis to see how different factors alter the calculated pH in Raman maps of MBA functionalized Au nanostars in SW620 cancer cells. The methods included in our comparison use the relative intensity of the ν(COO-) stretch, chemometric analysis of the ν8a mode, and analyzing the frequency shift of the ν8a mode. These methods show different sensitivity to some of these sources of error in live cell experiments. pH determination based on Raman frequency shift appears to give a more reliable pH determination, though in high signal-to-noise environments, intensity ratios may provide better sensitivity to small changes in pH for cellular imaging.


Assuntos
Células/química , Concentração de Íons de Hidrogênio , Análise Espectral Raman/métodos , Benzoatos/química , Linhagem Celular Tumoral , Humanos , Nanopartículas Metálicas/química , Prata/química , Compostos de Sulfidrila/química
10.
Anal Chem ; 92(13): 9389-9398, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32484329

RESUMO

The ability to locate and identify molecular interactions in cells has significant importance for understanding protein function and molecular biology. Functionalized metallic nanoparticles have been used as probes for protein tracking and drug delivery because of their ability to carry therapeutic agents and readily functionalized surfaces. In this work, we present a super-resolution surface-enhanced Raman scattering (SERS) approach for imaging and tracking membrane receptors interacting with peptide-functionalized gold nanostars (AuNS). The αvß3 integrin receptors in colon cancer cells are successfully targeted and imaged using AuNS with the high-affinity amino acid sequence arginine-glycine-aspartic acid-phenylalanine-cysteine (RGDFC) attached. The RGDFC peptide interaction with the integrin receptor provides a bright and fluctuating SERS signal that can be analyzed with localization microscopy algorithms. Additionally, the observed SERS spectrum is used to confirm protein-peptide interaction. Experiments with functionalized and bare AuNS illustrate specific and nonspecific binding events. Specific binding is monitored with a localization precision of ∼6 nm. The observed spatial resolution is associated with tight binding, which was confirmed by the slower diffusion coefficient measured from 4.4 × 10-11 cm2/s for the AuNS-RGDFC compared to 7.8 × 10-10 cm2/s for the bare AuNS. Super-resolution SERS images at different focal planes show evidence of internalized particles and suggest insights into protein orientation on the surface of cells. Our work demonstrates super-resolution SERS imaging to probe membrane receptor interactions in cells, providing chemical information and spatial resolution with potential for diverse applications in life science and biomedicine.


Assuntos
Integrina alfaVbeta3/análise , Análise Espectral Raman/métodos , Sequência de Aminoácidos , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ouro/química , Humanos , Nanopartículas Metálicas/química , Peptídeos/química
11.
Angew Chem Int Ed Engl ; 59(9): 3439-3443, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-31765069

RESUMO

Metabolomics is a powerful systems biology approach that monitors changes in biomolecule concentrations to diagnose and monitor health and disease. However, leading metabolomics technologies, such as NMR and mass spectrometry (MS), access only a small portion of the metabolome. Now an approach is presented that uses the high sensitivity and chemical specificity of surface-enhanced Raman scattering (SERS) for online detection of metabolites from tumor lysates following liquid chromatography (LC). The results demonstrate that this LC-SERS approach has metabolite detection capabilities comparable to the state-of-art LC-MS but suggest a selectivity for the detection of a different subset of metabolites. Analysis of replicate LC-SERS experiments exhibit reproducible metabolite patterns that can be converted into barcodes, which can differentiate different tumor models. Our work demonstrates the potential of LC-SERS technology for metabolomics-based diagnosis and treatment of cancer.


Assuntos
Metaboloma , Metabolômica/métodos , Neoplasias/diagnóstico , Animais , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Camundongos , Neoplasias/metabolismo , Análise Espectral Raman , Proteína Wnt1/metabolismo
12.
Analyst ; 144(18): 5538-5546, 2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31402356

RESUMO

Chemical signals are conveyed to cells through ligand-receptor binding, triggering cascades of biochemical reactions and resulting in pivotal cellular functions. These binding events are important in understanding membrane signaling and drug interactions. To probe ligand-receptor binding, surface enhanced Raman scattering (SERS) tags are a promising tool. SERS tags are plasmonic nanostructures functionalized with a protective coating, a Raman reporter molecule, and a biorecognition element. In biological fluids, native proteins have affinity for bare nanoparticles and form a protein corona. SERS tags have a protective shell which eliminates this complication. It is important to analyze ligand-receptor binding with SERS tags in live cells since cell fixatives alter protein structure, leading to spectral changes and data misinterpretation. In this study, we synthesized a novel SERS tag by creating a mixed monolayer of the small cyclic arginine-glycine-aspartic acid-phenylalanine-cysteine (RGDFC) peptide and 4-mercaptobenzonitrile (MBN) on the surface of spherical gold nanoparticles (Au NP). Au-RGDFC-MBN NP showed resistance to PC formation and were successfully detected in both fixed and living human metastatic colon cancer cells.


Assuntos
Integrina alfaVbeta3/metabolismo , Coroa de Proteína/química , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Sobrevivência Celular , Ouro/química , Humanos , Nanopartículas Metálicas/química , Nitrilas/química , Oligopeptídeos/química
13.
Chem Sci ; 10(6): 1807-1815, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30842849

RESUMO

Protein-ligand recognition is a key activity where chemical signals are communicated to cells to activate various biochemical pathways, which are important for understanding membrane signaling and drug interactions. Gold nanostars are highly attractive for biological applications due to their readily modified surface chemistry, facile synthesis and optical properties. The increase in electromagnetic field at their branches increases the surface enhanced Raman scattering (SERS) making them ideal candidates as label free in vitro probes that can be used to detect a variety of cellular activities. However, the use of particles in vitro is complicated by the adsorption of proteins, which forms the protein corona. In this paper we demonstrate gold nanostars as label free in vitro probes to study the interaction between αvß3 integrin and RGD. Nanostars functionalized with cyclic-RDGFC reduced the formation of the protein corona, due to its zwitterionic nature, indicating a small peptide approach to minimizing protein absorption. Additionally, the functionalized nanostars evince a SERS response from their interaction with αvß3 integrin representative of the amino acids present at the binding site which is also retained in a complex biological matrix. The nanostars were used in vitro to selectively detect αvß3 integrin on the membrane of human metastatic colon cancer cells. By exploiting the intense SERS and tunable plasmon resonance properties of gold nanostars functionalized with cyclic RGDFC, we have demonstrated a label free approach to investigate the chemical interactions associated with protein-ligand binding from both purified proteins and membrane bound receptors in cells.

14.
Sci Rep ; 7(1): 15295, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127342

RESUMO

Ovarian cancer (OvCa) cells are reported to undergo biochemical changes at the cell surface in response to treatment with lysophosphatidic acid (LPA). Here we use scanning electron microscopy (SEM) and multiplex coherent anti-Stokes Raman scattering (CARS) imaging via supercontinuum excitation to probe morphological changes that result from LPA treatment. SEM images show distinct shedding of microvilli-like features upon treatment with LPA. Analysis of multiplex CARS images can distinguish between molecular components, such as lipids and proteins. Our results indicate that OvCa429 and SKOV3ip epithelial ovarian cancer cells undergo similar morphological and chemical responses to treatment with LPA. The microvilli-like structures on the surface of multicellular aggregates (MCAs) are removed by treatment with LPA. The CARS analysis shows a distinct decrease in protein and increase in lipid composition on the surface of LPA-treated cells. Importantly, the CARS signals from cellular sheddings from MCAs with LPA treatment are consistent with cleavage of proteins originally present. Mass spectrometry on the cellular sheddings show that a large number of proteins, both membrane and intracellular, are present. An increased number of peptides are detected for the mesenchymal cell line relative to the epithelial cell indicating a differential response to LPA treatment with cancer progression.


Assuntos
Carcinoma Epitelial do Ovário , Lisofosfolipídeos/farmacologia , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário/química , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Ovarianas/química , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
15.
Anal Chem ; 89(17): 9091-9099, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28805059

RESUMO

The specific interaction between a ligand and a protein is a key component in minimizing off-target effects in drug discovery. Investigating these interactions with membrane protein receptors can be quite challenging. In this report, we show how spectral variance observed in surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) can be correlated with ligand specificity in affinity-based assays. Variations in the enhanced Raman spectra of three peptide ligands (i.e., cyclic-RGDFC, cyclic-isoDGRFC, and CisoDGRC), which have different binding affinity to αvß3 integrin, are reported from isolated proteins and from receptors in intact cancer cell membranes. The SERS signal from the purified proteins provides basis spectra to analyze the signals in cells. Differences in the spectral variance within the SERS and TERS data for each ligand indicate larger variance for nonspecific ligand-receptor interactions. The SERS and TERS results are correlated with single particle tracking experiments of the ligand-functionalized nanoparticles with purified receptors on glass surfaces and living cells. These results demonstrate the ability to elucidate protein-ligand recognition using the observed vibrational spectra and provide perspective on binding specificity for small-molecule ligands in intact cell membranes, demonstrating a new approach for investigating drug specificity.


Assuntos
Integrina alfaVbeta3/química , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Membrana Celular/química , Ouro/química , Humanos , Ligantes , Nanopartículas Metálicas/química , Ligação Proteica
16.
Artigo em Inglês | MEDLINE | ID: mdl-27722181

RESUMO

Membrane receptors play important roles in regulating cellular activities. Targeting membrane receptors in cancer cells and understanding their interactions with specific ligands are key for cancer prognosis and therapeutics. However, there is a need to develop new technologies to provide molecular insight into ligand-receptor binding chemistry in cell membrane. Integrin receptors are important membrane receptors that regulate cellular migration, invasion and proliferation in tumors. Integrins have a well-known affinity towards small peptide ligands containing arginine-glycine-aspartate (RGD) sequence and are therefore an attractive model system to study ligand-receptor interactions. We have recently reported a method to detect integrin receptors and study their binding chemistry with cyclic-RGDfC ligand using tip-enhanced Raman scattering (TERS). We have demonstrated that two integrins with similar structures can be differentiated in intact cell membrane, due to the differences in their RGD ligand binding sites, showing the potential of this TERS methodology to study other membrane receptors and their interactions in live cells.

18.
Anal Chem ; 88(14): 7191-7, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27356266

RESUMO

Hydrogen peroxide (H2O2) is known as a key molecule in a variety of biological processes, as well as a crucial byproduct in many enzymatic reactions. Therefore, being able to selectively and sensitively detect H2O2 is not only important in monitoring, estimating, and decoding H2O2 relevant physiological pathways but also very helpful in developing enzymatic-based biosensors for other analytes of interest. Herein, we report a plasmonic probe for H2O2 based on 3-mercaptophenylboronic acid (3-MPBA) modified gold nanoparticles (AuNPs) which is coupled with surface-enhanced Raman scattering (SERS) to yield a limit of detection (LOD) of 70 nM. Our probe quantifies both exogenous and endogenous H2O2 levels in living cells and can further be coupled with glucose oxidase (GOx) to achieve quantitative and selective detection of glucose in artificial urine and human serum.


Assuntos
Técnicas Biossensoriais/métodos , Glicemia/análise , Ácidos Borônicos/química , Peróxido de Hidrogênio/análise , Nanopartículas Metálicas/química , Glicemia/química , Ácidos Borônicos/toxicidade , Linhagem Celular Tumoral , Glucose Oxidase/química , Ouro/química , Humanos , Limite de Detecção , Nanopartículas Metálicas/toxicidade , Análise Espectral Raman
19.
Anal Chem ; 88(12): 6547-53, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27189228

RESUMO

Ligand-receptor interactions play important roles in many biological processes. Cyclic arginine-glycine-aspartic acid (RGD) containing peptides are known to mimic the binding domain of extracellular matrix protein fibronectin and selectively bind to a subset of integrin receptors. Here we report the tip enhanced Raman scattering (TERS) detection of RGD-functionalized nanoparticles bound to integrins produces a Raman scattering signal specific to the bound protein. These results demonstrate that this method can detect and differentiate between two different integrins (α5ß1 and αvß3) bound to RGD-conjugated gold nanoparticles both on surfaces and in a cancer cell membrane. In situ measurements of RGD nanoparticles bound to purified α5ß1 and αvß3 receptors attached to a glass surface provide reference spectra for a multivariate regression model. The TERS spectra observed from nanoparticles bound to cell membranes are analyzed using this regression model and the identity of the receptor can be determined. The ability to distinguish between receptors in the cell membrane provides a new tool to chemically characterize ligand-receptor recognition at molecular level and provide chemical perspective on the molecular recognition of membrane receptors.


Assuntos
Neoplasias do Colo/metabolismo , Integrina alfaVbeta3/metabolismo , Microscopia/instrumentação , Peptídeos Cíclicos/metabolismo , Análise Espectral Raman/instrumentação , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Ouro/química , Humanos , Integrina alfaVbeta3/análise , Nanopartículas Metálicas/química , Peptídeos Cíclicos/análise , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA