Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0221923, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676019

RESUMO

Melanized fungi thrive in extreme environments, including those with high levels of ionizing radiation. To understand the role that melanin may play in ionizing radiation resistance, we previously performed an adaptive laboratory evolution experiment in which we used melanized and non-melanized strains of the yeast Exophiala dermatitidis to develop evolved lines that exhibit increased ionizing radiation resistance. In this study, we further characterized these evolved lines by analyzing their response to ionizing radiation at the transcriptomic and genomic levels. RNA sequencing showed that the response to gamma irradiation in both unevolved and evolved strains involved the induction of DNA repair genes. However, in the melanized lines evolved to exhibit increased ionizing radiation resistance, DNA-associated genes were constitutively expressed, compared to their expression levels in wild type. Non-melanized lines that were evolved to be resistant to ionizing radiation, on the other hand, exhibited upregulation of genes involved in redox homeostasis, even under non-irradiated conditions. Additionally, we characterized genome-wide mutations induced by a single high dose of gamma radiation in these evolved lines and observed that while melanin did not directly affect survival after gamma radiation exposure, melanized lines that evolved to exhibit higher ionizing radiation resistance experienced fewer mutations, whereas similarly evolved, non-melanized lines accumulated more mutations, similar to the parent, non-melanized strain. These results underscore the complex yet measurable role of melanin in the response to ionizing radiation in E. dermatitidis. Furthermore, this study enhances our understanding of the mechanisms underlying the recovery after ionizing radiation exposure in melanized fungi and offers insights into the potential therapeutic applications of melanin and other redox molecules for protecting against ionizing radiation-induced damage. IMPORTANCE Ionizing radiation poses a significant threat to living organisms and human health, given its destructive nature and widespread use in fields such as medicine and the potential for nuclear disasters. Melanized fungi exhibit remarkable survival capabilities, enduring doses up to 1,000-fold higher than mammals. Through adaptive laboratory evolution, we validated the protective role of constitutive upregulation of DNA repair genes in the black yeast Exophiala dermatitidis, enhancing survival after radiation exposure. Surprisingly, we found that evolved strains lacking melanin still achieved high levels of radioresistance. Our study unveiled the significance of robust activation and enhancement of redox homeostasis, as evidenced by the profound transcriptional changes and increased accumulation of mutations, in substantially improving ionizing radiation resistance in the absence of melanin. These findings underscore the delicate balance between DNA repair and redox homeostasis for an organism's ability to endure and recover from radiation exposure.

2.
Environ Microbiol ; 23(7): 3627-3645, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33078510

RESUMO

Fungi have been observed to exhibit resistance to high levels of ionizing radiation despite sharing most DNA repair mechanisms with other eukaryotes. Radioresistance, in fact, is such a common feature in fungi that it is difficult to identify species that exhibit widely different radiosensitivities, which in turn has hampered the identification of genetic elements responsible for this resistance phenotype. Due to the inherent mutagenic properties of radiation exposure, however, this can be addressed through adaptive laboratory evolution for increased ionizing radiation resistance. Here, using the black yeast Exophiala dermatitidis, we demonstrate that resistance to γ-radiation can be greatly increased through repeated rounds of irradiation and outgrowth. Moreover, we find that the small genome size of fungi situates them as a relatively simple functional genomics platform for identification of mutations associated with ionizing radiation resistance. This enabled the identification of genetic mutations in genes encoding proteins with a broad range of functions from 10 evolved strains. Specifically, we find that greatly increased resistance to γ-radiation is achieved in E. dermatitidis through disruption of the non-homologous end-joining pathway, with three individual evolutionary paths converging to abolish this DNA repair process. This result suggests that non-homologous end-joining, even in haploid cells where homologous chromosomes are not present during much of the cell cycle, is an impediment to repair of radiation-induced lesions in this organism, and that the relative levels of homologous and non-homologous repair in a given fungal species may play a major role in its radiation resistance.


Assuntos
Exophiala , Radiação Ionizante , Reparo do DNA/genética , Tolerância a Radiação/genética
3.
Genes (Basel) ; 11(10)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992890

RESUMO

The yeast Exophiala dermatitidis exhibits high resistance to γ-radiation in comparison to many other fungi. Several aspects of this phenotype have been characterized, including its dependence on homologous recombination for the repair of radiation-induced DNA damage, and the transcriptomic response invoked by acute γ-radiation exposure in this organism. However, these findings have yet to identify unique γ-radiation exposure survival strategies-many genes that are induced by γ-radiation exposure do not appear to be important for recovery, and the homologous recombination machinery of this organism is not unique compared to more sensitive species. To identify features associated with γ-radiation resistance, here we characterized the proteomes of two E. dermatitidis strains-the wild type and a hyper-resistant strain developed through adaptive laboratory evolution-before and after γ-radiation exposure. The results demonstrate that protein intensities do not change substantially in response to this stress. Rather, the increased resistance exhibited by the evolved strain may be due in part to increased basal levels of single-stranded binding proteins and a large increase in ribosomal content, possibly allowing for a more robust, induced response during recovery. This experiment provides evidence enabling us to focus on DNA replication, protein production, and ribosome levels for further studies into the mechanism of γ-radiation resistance in E. dermatitidis and other fungi.


Assuntos
Exophiala/crescimento & desenvolvimento , Proteínas Fúngicas/metabolismo , Raios gama/efeitos adversos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Proteoma/metabolismo , Tolerância a Radiação , Transcriptoma/efeitos da radiação , DNA Fúngico/análise , DNA Fúngico/genética , Exophiala/genética , Exophiala/metabolismo , Exophiala/efeitos da radiação , Proteínas Fúngicas/genética , Melaninas/metabolismo , Proteoma/análise
4.
Fungal Genet Biol ; 141: 103412, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32445863

RESUMO

During growth, filamentous fungi produce polarized cells called hyphae. It is generally presumed that polarization of hyphae is dependent upon secretion through the Spitzenkörper, as well as a mechanism called apical recycling, which maintains a balance between the tightly coupled processes of endocytosis and exocytosis. Endocytosis predominates in an annular domain called the sub-apical endocytic collar, which is located in the region of plasma membrane 1-5 µm distal to the Spitzenkörper. It has previously been proposed that one function of the sub-apical endocytic collar is to maintain the apical localization of polarization proteins. These proteins mark areas of polarization at the apices of hyphae. However, as hyphae grow, these proteins are displaced along the membrane and some must then be removed at the sub-apical endocytic collar in order to maintain the hyphoid shape. While endocytosis is fairly well characterized in yeast, comparatively little is known about the process in filamentous fungi. Here, a bioinformatics approach was utilized to identify 39 Aspergillus nidulans proteins that are predicted to be cargo of endocytosis based on the presence of an NPFxD peptide motif. This motif is a necessary endocytic signal sequence first established in Saccharomyces cerevisiae, where it marks proteins for endocytosis through an interaction with the adapter protein Sla1p. It is hypothesized that some proteins that contain this NPFxD peptide sequence in A. nidulans will be potential targets for endocytosis, and therefore will localize either to the endocytic collar or to more proximal polarized regions of the cell, e.g. the apical dome or the Spitzenkörper. To test this, a subset of the motif-containing proteins in A. nidulans was tagged with GFP and the dynamic localization was evaluated. The documented localization patterns support the hypothesis that the motif marks proteins for localization to the polarized cell apex in growing hyphae.


Assuntos
Motivos de Aminoácidos/genética , Aspergillus nidulans/genética , Proteínas Fúngicas/genética , Hifas/genética , Aspergillus nidulans/patogenicidade , Membrana Celular/genética , Polaridade Celular/genética , Endocitose/genética , Exocitose/genética , Proteínas Fúngicas/isolamento & purificação , Hifas/patogenicidade , Peptídeos/genética , Saccharomyces cerevisiae/genética
5.
Environ Microbiol ; 22(4): 1310-1326, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32011087

RESUMO

The melanized yeast Exophiala dermatitidis is resistant to many environmental stresses and is used as a model for understanding the diverse roles of melanin in fungi. Here, we describe the extent of resistance of E. dermatitidis to acute γ-radiation exposure and the major mechanisms it uses to recover from this stress. We find that melanin does not protect E. dermatitidis from γ-radiation. Instead, environmental factors such as nutrient availability, culture age and culture density are much greater determinants of cell survival after exposure. We also observe a dramatic transcriptomic response to γ-radiation that mobilizes pathways involved in morphological development, protein degradation and DNA repair, and is unaffected by the presence of melanin. Together, these results suggest that the ability of E. dermatitidis to survive γ-radiation exposure is determined by the prior and the current metabolic state of the cells as well as DNA repair mechanisms, and that small changes in these conditions can lead to large effects in radiation resistance, which should be taken into account when understanding how diverse fungi recover from this unique stress.


Assuntos
Exophiala/metabolismo , Exophiala/efeitos da radiação , Melaninas/metabolismo , Reparo do DNA/efeitos da radiação , DNA Fúngico/efeitos da radiação , Exophiala/genética , Tolerância a Radiação , Estresse Fisiológico , Transcrição Gênica/efeitos da radiação , Transcriptoma
6.
Environ Microbiol ; 21(8): 2613-2628, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30724440

RESUMO

The pathogenic fungus Cryptococcus neoformans produces melanin within its cell wall for infection and resistance against external stresses such as exposure to UV, temperature fluctuations and reactive oxygen species. It has been reported that melanin may also protect cells from ionizing radiation damage, against which C. neoformans is extremely resistant. This has tagged melanin as a potential radioprotective biomaterial. Here, we report the effect of melanin on the transcriptomic response of C. neoformans to gamma radiation. We did not observe a substantial protective effect of melanin against gamma radiation, and the general gene expression patterns in irradiated cells were independent of the presence of melanin. However, melanization itself dramatically altered the C. neoformans transcriptome, primarily by repressing genes involved in respiration and cell growth. We suggest that, in addition to providing a physical and chemical barrier against external stresses, melanin production alters the transcriptional landscape of C. neoformans with the result of increased resistance to uncertain environmental conditions. This observation demonstrates the importance of the melanization process in understanding the stress response of C. neoformans and for understanding fungal physiology.


Assuntos
Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/efeitos da radiação , Raios gama , Melaninas/metabolismo , Parede Celular/metabolismo , Criptococose , Cryptococcus neoformans/efeitos dos fármacos , Perfilação da Expressão Gênica , Tolerância a Radiação
7.
Mol Microbiol ; 97(1): 18-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25846564

RESUMO

Endocytosis and exocytosis are strictly segregated at the ends of hyphal cells of filamentous fungi, with a collar of endocytic activity encircling the growing cell tip, which elongates through directed membrane fusion. It has been proposed that this separation supports an endocytic recycling pathway that maintains polar localization of proteins at the growing apex. In a search for proteins in the filamentous fungus Aspergillus nidulans that possess an NPFxD motif, which signals for endocytosis, a Type 4 P-Type ATPase was identified and named DnfA. Interestingly, NPFxD is at a different region of DnfA than the same motif in the Saccharomyces cerevisiae ortholog, although endocytosis is dependent on this motif for both proteins. DnfA is involved in asexual sporulation and polarized growth. Additionally, it is segregated within the Spitzenkörper from another Type 4 P-type ATPase, DnfB. Next, the phosphatidylserine marker GFP::Lact-C2 was expressed in growing hyphae, which revealed that this phospholipid is enriched on the cytosolic face of secretory vesicles. This distribution is affected by deleting either dnfA or dnfB. These findings provide evidence for the spatial and temporal segregation of Type4-ATPases in filamentous fungi, and the asymmetric distribution of phosphatidylserine to the Spitzenkörper in A. nidulans.


Assuntos
Adenosina Trifosfatases/metabolismo , Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Endocitose , Proteínas Fúngicas/metabolismo , Hifas/crescimento & desenvolvimento , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/isolamento & purificação , Aspergillus nidulans/genética , Transporte Biológico , Exocitose , Proteínas Fúngicas/genética , Hifas/enzimologia , Hifas/ultraestrutura , Mutação , Fenótipo , Fosfatidilserinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esporos Fúngicos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA