Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38258250

RESUMO

Aligned with the medical device industry's trend of miniaturization, academic and commercial researchers are constantly attempting to reduce device sizes. Many applications require miniature actuators (2 mm range) to perform mechanical work; however, biocompatible micromotors are not readily available. To that end, a hydraulic motor-driven cutting module that aims to combine cutting and drug delivery is presented. The hydraulic motor prototype developed has an outside diameter (OD) of ~4 mm (twice the target size) and a 1 mm drive shaft to attach a cutter. Four different designs were explored and fabricated using additive manufacturing. The benchtop experimental data of the prototypes are presented herein. For the prototype motor with fluid inlet perpendicular to the blades, the average angular velocity was 10,593 RPM at a flowrate of 3.6 mL/s and 42,597 RPM at 10.1 mL/s. This design was numerically modeled using 3D-transient simulations in ANSYS CFX (version 2022 R2) to determine the performance characteristics and the internal resistance of the motor. Simplified mathematical models were also used to compute and compare the peak torque with the simulation estimates. The viability of current design represents a crucial milestone in scaling the hydraulic motor to a 2 mm OD to power a microcutter.

2.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512649

RESUMO

Miniaturization of multifunctional instruments is key to evolving less invasive medical procedures. The current work outlines steps towards developing a miniature motor to power a cutting tool of a millimeter-scale robot/device (target outside diameter ~2 mm) for minimally invasive procedures. Multiple motor concepts were explored and ranked using a Pugh matrix. The single-rotor hydraulic design was deemed most viable for prototyping and scale-down to the target size. Prototypes were manufactured to be progressively smaller using additive manufacturing. The smallest prototype fabricated was 2:1 scale of the desired final size with a 2 mm outside diameter (OD) rotor and a device OD of 4 mm. The scaled prototypes with an 8 mm rotor were lab tested and achieved average speeds of 5000-6000 RPM at a flowrate of 15-18 mL/s and 45 PSI water pressure. Ansys CFX was used as a design tool to explore the parameter space and 3D transient simulations were implemented using the immersed solid method. The predicted rotor RPM from the modeling matched the experimental values within 3% error. The model was then used to develop performance curves for the miniature hydraulic motor. In summary, the single-rotor hydraulic design shows promise for miniaturization to the target 2 mm size.

3.
ACS Med Chem Lett ; 7(3): 217-22, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26985301

RESUMO

A novel series of potent and selective hexokinase 2 (HK2) inhibitors, 2,6-disubstituted glucosamines, has been identified based on HTS hits, exemplified by compound 1. Inhibitor-bound crystal structures revealed that the HK2 enzyme could adopt an "induced-fit" conformation. The SAR study led to the identification of potent HK2 inhibitors, such as compound 34 with greater than 100-fold selectivity over HK1. Compound 25 inhibits in situ glycolysis in a UM-UC-3 bladder tumor cell line via (13)CNMR measurement of [3-(13)C]lactate produced from [1,6-(13)C2]glucose added to the cell culture.

4.
Bioorg Med Chem Lett ; 22(6): 2230-4, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22361133

RESUMO

A series of PI3K-beta selective inhibitors, imidazo[1,2-a]-pyrimidin-5(1H)-ones, has been rationally designed based on the docking model of the more potent R enantiomer of TGX-221, identified by a chiral separation, in a PI3K-beta homology model. Synthesis and SAR of this novel chemotype are described. Several compounds in the series demonstrated potent growth inhibition in a PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage independent conditions.


Assuntos
Antineoplásicos/síntese química , Imidazóis/síntese química , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/síntese química , Pirimidinonas/síntese química , Antineoplásicos/farmacologia , Sítios de Ligação , Neoplasias da Mama , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Deleção de Genes , Humanos , Imidazóis/farmacologia , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Pirimidinonas/farmacologia , Relação Estrutura-Atividade
5.
ACS Med Chem Lett ; 3(7): 524-9, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-24900504

RESUMO

A novel thiazolopyrimidinone series of PI3K-beta selective inhibitors has been identified. This chemotype has provided an excellent tool compound, 18, that showed potent growth inhibition in the PTEN-deficient breast cancer cell line MDA-MB-468 under anchorage-independent conditions, and it also demonstrated pharmacodynamic effects and efficacy in a PTEN-deficient prostate cancer PC-3 xenograft mouse model.

6.
Anal Bioanal Chem ; 396(8): 3009-15, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20213174

RESUMO

Magnesium (Mg) as a biodegradable metal has potential advantages as an implant material. This paper studies the effect of magnesium ions on osteoblast (U2-OS) behavior since magnesium implants mainly dissolve as divalent magnesium ions (Mg(2+)). A real-time monitoring technique based on electric cell-substrate impedance sensing (ECIS) was used for measuring cell proliferation, migration, adhesion, and cytotoxicity in magnesium-conditioned media. The impedance results show that U2-OS proliferation and adhesion were inhibited in not only a magnesium-free medium but also in a medium with a high concentration of magnesium. The impedance method produced more sensitive results than the output of an MTT assay. Other standard bioanalytical tests were conducted for comparison with the ECIS method. Immunochemistry was carried out to study cell adhesion in magnesium-conditioned media by staining using F-actin and alpha-tubulin and correlated cell density on the electrode with impedance. Bone tissue formation was studied using von Kossa staining and indicated the mineralization level of cells in magnesium-conditioned media decreased with the increase of magnesium ion concentration. Real-time PCR provided gene expression indicators of cell growth, apoptosis, inflammation, and migration. Compared to the bioanalytical methods of immunochemistry and MTT assays, which need preparation time and post-washing step, ECIS was able to measure cell activity in real time without any cell culture modification. In summary, ECIS might be an effective way to study biodegradable magnesium implants.


Assuntos
Técnicas Eletroquímicas/métodos , Magnésio/metabolismo , Osteoblastos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Meios de Cultivo Condicionados , Impedância Elétrica , Eletrodos , Regulação da Expressão Gênica , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo
7.
J Nanosci Nanotechnol ; 7(3): 891-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17450851

RESUMO

This paper describes the fabrication and evaluation of carbon nanotube (CNT) electrodes grown on stainless steel (SS) plate and wire for electrochemical sensor applications. Multi-wall carbon nanotubes with different diameters were grown on the SS plate and wire by chemical vapor deposition from an ethylene precursor. The SS provides a good electrical and mechanical connection to the CNT, and the SS is a tough substrate. The SS part of the electrode was electrically insulated from the analyte so that only the CNT were active in sensing. Cyclic voltammetry for the reduction of 6 mM K3Fe(CN)6 in a 1.0 M KNO3 supporting electrolyte was performed to examine the redox behavior of the CNT-SS electrode. The cyclic voltammograms showed sigmoidal-like shapes, indicating that mass transport around the electrodes is dominated by radial diffusion. Based on the cyclic voltammograms, the effective area of the CNT-SS electrodes and the number of individual CNTs were estimated. These results indicate that the CNT-SS plate and wire electrodes are good candidates to develop practical in vivo biosensors.


Assuntos
Nanotubos de Carbono/ultraestrutura , Técnicas Biossensoriais , Eletroquímica , Microeletrodos , Microscopia Eletrônica de Varredura , Nanotecnologia , Nanofios/ultraestrutura , Aço Inoxidável
8.
Nanotechnology ; 18(46): 465505, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-21730479

RESUMO

Highly aligned multi-wall carbon nanotubes were synthesized in the shape of towers and embedded into fluidic channels as electrodes for impedance measurement of LNCaP human prostate cancer cells. Tower electrodes up to 8 mm high were grown and easily peeled off a silicon substrate. The nanotube electrodes were then successfully soldered onto patterned printed circuit boards and cast into epoxy under pressure. After polishing the top of the tower electrodes, RF plasma was used to enhance the electrocatalytic effect by removing excess epoxy and activating the open end of the nanotubes. Electrodeposition of Au particles on the plasma-treated tower electrodes was done at a controlled density. Finally, the nanotube electrodes were embedded into a polydimethylsiloxane (PDMS) channel and electrochemical impedance spectroscopy was carried out with different conditions. Preliminary electrochemical impedance spectroscopy results using deionized water, buffer solution, and LNCaP prostate cancer cells showed that nanotube electrodes can distinguish the different solutions and could be used in future cell-based biosensor development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA