Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1068(2): 217-30, 1991 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-1655032

RESUMO

Methylthioadenosine sulfoxide (MTAS), an oxidized derivative of the cell toxic metabolite methylthioadenosine has been used in elucidating the relevance of an interrelationship between the catalytic behavior and the conformational state of hepatic glucose-6-phosphatase and in characterizing the transmembrane orientation of the integral unit in the microsomal membrane. The following results were obtained: (1) Glucose 6-phosphate hydrolysis at 37 degrees C is progressively inhibited when native microsomes are treated with MTAS at 37 degrees C. In contrast, glucose 6-phosphate hydrolysis of the same MTAS-treated microsomes assayed at 0 degrees C is not inhibited. (2) Subsequent modification of the MTAS-treated microsomes with Triton X-114 reveals that glucose-6-phosphatase assayed at 37 degrees C as well as at 0 degrees C is inhibited. (3) Although excess reagent is separated by centrifugation and the MTAS-treated microsomes diluted with buffer before being modified with Triton the temperature-dependent effect of MTAS on microsomal glucose-6-phosphatase is not reversed at all. (4) In native microsomes MTAS is shown to inhibit glucose-6-phosphatase noncompetitively. The subsequent Triton-modification of the MTAS-treated microsomes, however, generates an uncompetitive type of inhibition. (5) Preincubation of native microsomes with MTAS completely prevents the inhibitory effect of 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS) as well as 4,4'-diazidostilbene 2,2'-disulfonate (DASS) on glucose-6-phosphatase. (6) Low molecular weight thiols and tocopherol protect the microsomal glucose-6-phosphatase against MTAS-induced inhibition. (7) Glucose-6-phosphatase solubilized and partially purified from rat liver microsomes is also affected by MTAS in demonstrating the same temperature-dependent behavior as the enzyme of MTAS-treated and Triton-modified microsomes. From these results we conclude that MTAS modulates the enzyme catalytic properties of hepatic glucose-6-phosphatase by covalent modification of reactive groups of the integral protein accessible from the cytoplasmic surface of the microsomal membrane. The temperature-dependent kinetic behavior of MTAS-modulated glucose-6-phosphatase is interpreted by the existence of distinct catalytically active enzyme conformation forms. Detergent-induced modification of the adjacent hydrophobic microenvironment additionally generates alterations of the conformational state leading to changes of the kinetic characteristics of the integral enzyme.


Assuntos
Hidrolases Anidrido Ácido , Adenosina/análogos & derivados , Glucose-6-Fosfatase/antagonistas & inibidores , Microssomos Hepáticos/efeitos dos fármacos , Tionucleosídeos/farmacologia , Adenosina/farmacologia , Animais , Relação Dose-Resposta a Droga , Glucose-6-Fosfatase/isolamento & purificação , Cinética , Espectroscopia de Ressonância Magnética , Masculino , Espectrometria de Massas , Microssomos Hepáticos/enzimologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Conformação Proteica , Ratos , Compostos de Sulfidrila/farmacologia , Temperatura , Vitamina E/farmacologia
2.
Arch Biochem Biophys ; 275(1): 202-14, 1989 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-2554805

RESUMO

The effect of the photoactivated reagent 4,4'-diazidostilbene 2,2'-disulfonic acid (DASS) on rat liver microsomal glucose-6-phosphatase has been investigated in order to analyze the accessibility and the chemical nature of functional sites of the integral enzyme protein. The following results were obtained. (i) When native rat liver microsomes are irradiated with the photoactive reagent, the activity of glucose-6-phosphatase is progressively inhibited. However, complete reactivation is obtained by modification of the DASS-labeled microsomes with Triton X-114. (ii) Inhibition of glucose-6-phosphatase is also reversed when the DASS-labeled microsomes are treated with p-mercuribenzoate or dithiothreitol. (iii) When native microsomes are labeled with DASS an intensely fluorescent adduct is formed whose emission and excitation maximum corresponds with those obtained when cysteine or 3-mercaptopropionic acid are irradiated in the presence of the photolabile reagent. (iv) The data from fluorescence measurements show that p-mercuribenzoate and dithiothreitol reduce fluorescence labeling of the microsomes whereas Triton modification of the DASS-labeled membranes does not affect the DASS-induced fluorescence. (v) Glucose 6-phosphate hydrolysis of the partially purified glucose-6-phosphatase is also inhibited as observed with native microsomes. The DASS-induced inhibition is reversed and prevented by p-mercuribenzoate; however, the partially purified enzyme cannot be reactivated by Triton X-114. (vi) When glucose-6-phosphatase is partially purified from the DASS-labeled microsomes this enzyme preparation is fluorescence labeled and inhibited. From these results we conclude that DASS directly reacts with the integral phosphohydrolase mainly by chemical modification of essential sulfhydryl groups of the enzyme protein accessible from the cytoplasmic surface of the native microsomal membrane. The Triton-induced reactivation of the glucose-6-phosphatase of DASS-labeled microsomes is explained in terms of conformational changes of the integral protein elicited during modification of the surrounding membrane by detergent.


Assuntos
Azidas/farmacologia , Glucose-6-Fosfatase/metabolismo , Microssomos Hepáticos/enzimologia , Animais , Azidas/metabolismo , Sítios de Ligação , Ditiotreitol/farmacologia , Glucose-6-Fosfatase/isolamento & purificação , Cinética , Masculino , Mercurobenzoatos/farmacologia , Ratos , Ratos Endogâmicos , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA