Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 43(4): 281-293, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030791

RESUMO

Dysregulated cholesterol homeostasis promotes tumorigenesis and progression. Therefore, metabolic reprogramming constitutes a new hallmark of cancer. However, until today, only few therapeutic approaches exist to target this pathway due to the often-observed negative feedback induced by agents like statins leading to controversially increased cholesterol synthesis upon inhibition. Sterol regulatory element-binding proteins (SREBPs) are key transcription factors regulating the synthesis of cholesterol and fatty acids. Since SREBP2 is difficult to target, we performed pharmacological inhibition of retinoic acid receptor (RAR)-related orphan receptor gamma (RORγ), which acts upstream of SREBP2 and serves as master regulator of the cholesterol metabolism. This resulted in an inactivated cholesterol-related gene program with significant downregulation of cholesterol biosynthesis. Strikingly, these effects were more pronounced than the effects of fatostatin, a direct SREBP2 inhibitor. Upon RORγ inhibition, RNA sequencing showed strongly increased cholesterol efflux genes leading to leukemic cell death and cell cycle changes in a dose- and time-dependent manner. Combinatorial treatment of t(4;11) cells with the RORγ inhibitor showed additive effects with cytarabine and even strong anti-leukemia synergism with atorvastatin by circumventing the statin-induced feedback. Our results suggest a novel therapeutic strategy to inhibit tumor-specific cholesterol metabolism for the treatment of t(4;11) leukemia.


Assuntos
Colesterol , Leucemia , Neoplasias , Humanos , Colesterol/metabolismo , Homeostase , Leucemia/tratamento farmacológico , Leucemia/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
2.
Neoplasia ; 41: 100902, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148657

RESUMO

MLL rearranged (MLLr) leukemias are associated with a poor prognosis and a limited response to conventional therapies. Moreover, chemotherapies result in severe side effects with significant impairment of the immune system. Therefore, the identification of novel treatment strategies is mandatory. Recently, we developed a human MLLr leukemia model by inducing chromosomal rearrangements in CD34+ cells using clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9. This MLLr model authentically mimics patient leukemic cells and can be used as a platform for novel treatment strategies. RNA sequencing of our model revealed MYC as one of the most important key drivers to promote oncogenesis. However, in clinical trials the BRD4 inhibitor JQ-1 leading to indirect blocking of the MYC pathway shows only modest activity. We and others previously reported that epigenetic drugs targeting MAT2A or PRMT5 promote cell death in MLLr cells. Therefore, we use these drugs in combination with JQ-1 leading to augmented anti-leukemic effects. Moreover, we found activation of T, NK and iNKT cells, release of immunomodulatory cytokines and downregulation of the PD-1/PD-L1 axis upon inhibitor treatment leading to improved cytotoxicity. In summary, the inhibition of MYC and MAT2A or PRMT5 drives robust synergistic anti-leukemic activity in MLLr leukemia. Moreover, the immune system is concomitantly activated upon combinatorial inhibitor treatment, hereby further augmenting the therapeutic efficiency.


Assuntos
Leucemia , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Epigênese Genética , Proteínas de Ciclo Celular/genética , Proteína-Arginina N-Metiltransferases/genética , Metionina Adenosiltransferase/genética
3.
J Clin Med ; 11(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36233463

RESUMO

To identify potential genetic causes for Mayer-Rokitansky-Küster-Hauser syndrome (MRKH), we analyzed blood and rudimentary uterine tissue of 5 MRKH discordant monozygotic twin pairs. Assuming that a variant solely identified in the affected twin or affected tissue could cause the phenotype, we identified a mosaic variant in ACTR3B with high allele frequency in the affected tissue, low allele frequency in the blood of the affected twin, and almost absent in blood of the unaffected twin. Focusing on MRKH candidate genes, we detected a pathogenic variant in GREB1L in one twin pair and their unaffected mother showing a reduced phenotypic penetrance. Furthermore, two variants of unknown clinical significance in PAX8 and WNT9B were identified. In addition, we conducted transcriptome analysis of affected tissue and observed perturbations largely similar to those in sporadic cases. These shared transcriptional changes were enriched for terms associated with estrogen and its receptors pointing at a role of estrogen in MRKH pathology. Our genome sequencing approach of blood and uterine tissue of discordant twins is the most extensive study performed on twins discordant for MRKH so far. As no clear pathogenic differences were detected, research to evaluate other regulatory layers are required to better understand the complex etiology of MRKH.

4.
Dis Model Mech ; 15(5)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35394036

RESUMO

The uterus is responsible for the nourishment and mechanical protection of the developing embryo and fetus and is an essential part in mammalian reproduction. Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome is characterized by agenesis of the uterus and upper part of the vagina in females with normal ovarian function. Although heavily studied, the cause of the disease is still enigmatic. Current research in the field of MRKH mainly focuses on DNA-sequencing efforts and, so far, has been unable to decipher the nature and heterogeneity of the disease, thereby holding back scientific and clinical progress. Here, we developed long-term expandable organoid cultures from endometrium found in uterine rudiment horns of MRKH patients. Phenotypically, they share great similarity with healthy control organoids and are surprisingly fully hormone responsive. Transcriptome analyses, however, identified an array of dysregulated genes that point to potentially disease-causing pathways altered during the development of the female reproductive tract. We consider the endometrial organoid cultures to be a powerful research tool that promise to enable an array of studies into the pathogenic origins of MRKH syndrome and possible treatment opportunities to improve patient quality of life.


Assuntos
Transtornos 46, XX do Desenvolvimento Sexual , Anormalidades Congênitas , Transtornos 46, XX do Desenvolvimento Sexual/genética , Anormalidades Congênitas/genética , Endométrio , Feminino , Humanos , Masculino , Ductos Paramesonéfricos/anormalidades , Organoides , Qualidade de Vida , Vagina
5.
Cancers (Basel) ; 12(6)2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32517300

RESUMO

Mixed lineage leukemia (MLL) (KMT2A) rearrangements (KMT2Ar) play a crucial role in leukemogenesis. Dependent on age, major differences exist regarding disease frequency, main fusion partners and prognosis. In infants, up to 80% of acute lymphoid leukemia (ALL) bear a MLL translocation and half of them are t(4;11), resulting in a poor prognosis. In contrast, in adults only 10% of acute myeloid leukemia (AML) bear t(9;11) with an intermediate prognosis. The reasons for these differences are poorly understood. Recently, we established an efficient CRISPR/Cas9-based KMT2Ar model in hematopoietic stem and progenitor cells (HSPCs) derived from human cord blood (huCB) and faithfully mimicked the underlying biology of the disease. Here, we applied this model to HSPCs from adult bone marrow (huBM) to investigate the impact of the cell of origin and fusion partner on disease development. Both genome-edited infant and adult KMT2Ar cells showed monoclonal outgrowth with an immature morphology, myelomonocytic phenotype and elevated KMT2Ar target gene expression comparable to patient cells. Strikingly, all KMT2Ar cells presented with indefinite growth potential except for MLL-AF4 huBM cells ceasing proliferation after 80 days. We uncovered FFAR2, an epigenetic tumor suppressor, as potentially responsible for the inability of MLL-AF4 to immortalize adult cells under myeloid conditions.

6.
Cancers (Basel) ; 12(5)2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456310

RESUMO

Epigenetic dysregulation plays a pivotal role in mixed-lineage leukemia (MLL) pathogenesis, therefore serving as a suitable therapeutic target. S-adenosylmethionine (SAM) is the universal methyl donor in human cells and is synthesized by methionine adenosyltransferase 2A (MAT2A), which is deregulated in different cancer types. Here, we used our human CRISPR/Cas9-MLL-rearranged (CRISPR/Cas9-MLLr) leukemia model, faithfully mimicking MLLr patients' pathology with indefinite growth potential in vitro, to evaluate the unknown role of MAT2A. Comparable to publicly available patient data, we detected MAT2A to be significantly overexpressed in our CRISPR/Cas9-MLLr model compared to healthy controls. By using non-MLLr and MLLr cell lines and our model, we detected an MLLr-specific enhanced response to PF-9366, a new MAT2A inhibitor, and small interfering (si) RNA-mediated knockdown of MAT2A, by alteration of the proliferation, viability, differentiation, apoptosis, cell cycling, and histone methylation. Moreover, the combinational treatment of PF-9366 with chemotherapy or targeted therapies against the SAM-dependent methyltransferases, disruptor of telomeric silencing 1 like (DOT1L) and protein arginine methyltransferase 5 (PRMT5), revealed even more pronounced effects. In summary, we uncovered MAT2A as a key regulator in MLL leukemogenesis and its inhibition led to significant anti-leukemic effects. Therefore, our study paves the avenue for clinical application of PF-9366 to improve the treatment of poor prognosis MLLr leukemia.

7.
Neurobiol Dis ; 134: 104634, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31678405

RESUMO

Dystonia is a neurological movement disorder characterized by sustained or intermittent involuntary muscle contractions. Loss-of-function mutations in the GNAL gene have been identified to be the cause of "isolated" dystonia DYT25. The GNAL gene encodes for the guanine nucleotide-binding protein G(olf) subunit alpha (Gαolf), which is mainly expressed in the olfactory bulb and the striatum and functions as a modulator during neurotransmission coupling with D1R and A2AR. Previously, heterozygous Gαolf -deficient mice (Gnal+/-) have been generated and showed a mild phenotype at basal condition. In contrast, homozygous deletion of Gnal in mice (Gnal-/-) resulted in a significantly reduced survival rate. In this study, using the CRISPR-Cas9 system we generated and characterized heterozygous Gnal knockout rats (Gnal+/-) with a 13 base pair deletion in the first exon of the rat Gnal splicing variant 2, a major isoform in both human and rat striatum. Gnal+/- rats showed early-onset phenotypes associated with impaired dopamine transmission, including reduction in locomotor activity, deficits in rotarod performance and an abnormal motor skill learning ability. At cellular and molecular level, we found down-regulated Arc expression, increased cell surface distribution of AMPA receptors, and the loss of D2R-dependent corticostriatal long-term depression (LTD) in Gnal+/- rats. Based on the evidence that D2R activity is normally inhibited by adenosine A2ARs, co-localized on the same population of striatal neurons, we show that blockade of A2ARs restores physiological LTD. This animal model may be a valuable tool for investigating Gαolf function and finding a suitable treatment for dystonia associated with deficient dopamine transmission.


Assuntos
Adenosina/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Distonia , Depressão Sináptica de Longo Prazo/fisiologia , Animais , Distonia/metabolismo , Distonia/fisiopatologia , Subunidades alfa de Proteínas de Ligação ao GTP/genética , Técnicas de Inativação de Genes , Masculino , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais/fisiologia
8.
Oncogene ; 38(46): 7181-7195, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31417187

RESUMO

MLL rearrangements play a crucial role in leukemogenesis and comprise a poor prognosis. Therefore, new treatment strategies are urgently needed. We used the CRISPR/Cas9 system to generate an innovative leukemia model based on 100% pure MLL-AF4 or -AF9 rearranged cells derived from umbilical cord blood with indefinite growth in cell culture systems. Our model shared phenotypical, morphological and molecular features of patient cells faithfully mimicking the nature of the disease. Thus, it serves as a fundamental basis for pharmacological studies: inhibition of histone methyltransferase disruptor of telomeric silencing 1-like (DOT1L) is one specific therapeutic approach currently tested in clinical trials. However, success was limited by restricted response warranting further investigation of drug combinations. Recently, it has been shown that the inhibition of protein arginine methyltransferase 5 (PRMT5) exhibits anti-tumoral activity against human cell lines and in MLL mouse models. Here, we used DOT1L and PRMT5 inhibitors in our human MLL-rearranged model demonstrating dose-dependent reduced proliferation, impairment of cell cycle, increasing differentiation, apoptosis, downregulation of target genes and sensitization to chemotherapy. Strikingly, the combination of both compounds led to synergistic anti-tumoral effects. Our study provides a strong rationale for novel targeted combination therapies to improve the outcome of MLL-rearranged leukemias.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Leucemia , Modelos Biológicos , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Adenosina/análogos & derivados , Adenosina/farmacologia , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Edição de Genes/métodos , Células-Tronco Hematopoéticas , Humanos , Isoquinolinas/farmacologia , Leucemia/genética , Proteína de Leucina Linfoide-Mieloide/genética , Compostos de Fenilureia/farmacologia , Pirimidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA