Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 23(2): 199-211, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37828728

RESUMO

Topoisomerase I (TOP1) Inhibitors constitute an emerging payload class to engineer antibody-drug conjugates (ADC) as next-generation biopharmaceutical for cancer treatment. Existing ADCs are using camptothecin payloads with lower potency and suffer from limited stability in circulation. With this study, we introduce a novel camptothecin-based linker-payload platform based on the highly potent camptothecin derivative exatecan. First, we describe general challenges that arise from the hydrophobic combination of exatecan and established dipeptidyl p-aminobenzyl-carbamate (PAB) cleavage sites such as reduced antibody conjugation yields and ADC aggregation. After evaluating several linker-payload structures, we identified ethynyl-phosphonamidates in combination with a discrete PEG24 chain to compensate for the hydrophobic PAB-exatecan moiety. Furthermore, we demonstrate that the identified linker-payload structure enables the construction of highly loaded DAR8 ADCs with excellent solubility properties. Head-to-head comparison with Enhertu, an approved camptothecin-based ADC, revealed improved target-mediated killing of tumor cells, excellent bystander killing, drastically improved linker stability in vitro and in vivo and superior in vivo efficacy over four tested dose levels in a xenograft model. Moreover, we show that ADCs based on the novel exatecan linker-payload platform exhibit antibody-like pharmacokinetic properties, even when the ADCs are highly loaded with eight drug molecules per antibody. This ADC platform constitutes a new and general solution to deliver TOP1 inhibitors with highest efficiency to the site of the tumor, independent of the antibody and its target, and is thereby broadly applicable to various cancer indications.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Imunoconjugados/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Anticorpos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
2.
Chem Sci ; 14(9): 2259-2266, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36873847

RESUMO

The recent success of antibody-drug conjugates (ADC), exemplified by seven new FDA-approvals within three years, has led to increased attention for antibody based targeted therapeutics and fueled efforts to develop new drug-linker technologies for improved next generation ADCs. We present a highly efficient phosphonamidate-based conjugation handle that combines a discrete hydrophilic PEG-substituent, an established linker-payload and a cysteine-selective electrophile in one compact building block. This reactive entity provides homogeneous ADCs with a high drug-to-antibody ratio (DAR) of 8 in a one-pot reduction and alkylation protocol from non-engineered antibodies. The compact branched PEG-architecture introduces hydrophilicity without increasing the distance between antibody and payload, allowing the generation of the first homogeneous DAR 8 ADC from VC-PAB-MMAE without increased in vivo clearance rates. This high DAR ADC exhibits excellent in vivo stability and increased antitumor activity in tumour xenograft models relative to the established FDA approved VC-PAB-MMAE ADC Adcetris, clearly showing the benefit of the phosphonamidate based building-blocks as a general tool for the efficient and stable antibody-based delivery of highly hydrophobic linker-payload systems.

3.
Blood ; 141(9): 1023-1035, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35981498

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is often overexpressed or constitutively activated by internal tandem duplication (ITD) and tyrosine kinase domain (TKD) mutations in acute myeloid leukemia (AML). Despite the use of receptor tyrosine kinase inhibitors (TKI) in FLT3-ITD-positive AML, the prognosis of patients is still poor, and further improvement of therapy is required. Targeting FLT3 independent of mutations by antibody-drug conjugates (ADCs) is a promising strategy for AML therapy. Here, we report the development and preclinical characterization of a novel FLT3-targeting ADC, 20D9-ADC, which was generated by applying the innovative P5 conjugation technology. In vitro, 20D9-ADC mediated potent cytotoxicity to Ba/F3 cells expressing transgenic FLT3 or FLT3-ITD, to AML cell lines, and to FLT3-ITD-positive patient-derived xenograft AML cells. In vivo, 20D9-ADC treatment led to a significant tumor reduction and even durable complete remission in AML xenograft models. Furthermore, 20D9-ADC demonstrated no severe hematotoxicity in in vitro colony formation assays using concentrations that were cytotoxic in AML cell line treatment. The combination of 20D9-ADC with the TKI midostaurin showed strong synergy in vitro and in vivo, leading to reduction of aggressive AML cells below the detection limit. Our data indicate that targeting FLT3 with an advanced new-generation ADC is a promising and potent antileukemic strategy, especially when combined with FLT3-TKI in FLT3-ITD-positive AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação
4.
Mol Microbiol ; 114(5): 839-856, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32738827

RESUMO

In bacteria, ParABS systems and structural maintenance of chromosome (SMC) condensin-like complexes are important for chromosome segregation and organization. The rod-shaped Myxococcus xanthus cells have a unique chromosome arrangement in which a scaffold composed of the BacNOP bactofilins and PadC positions the essential ParB∙parS segregation complexes and the DNA segregation ATPase ParA in the subpolar regions. We identify the Smc and ScpAB subunits of the SMC complex in M. xanthus and demonstrate that SMC is conditionally essential, with Δsmc or ΔscpAB mutants being temperature sensitive. Inactivation of SMC caused defects in chromosome segregation and organization. Lack of the BacNOP/PadC scaffold also caused chromosome segregation defects but this scaffold is not essential for viability. Inactivation of SMC was synthetic lethal with lack of the BacNOP/PadC scaffold. Lack of SMC interfered with formation of the BacNOP/PadC scaffold while lack of this scaffold did not interfere with chromosome association by SMC. Altogether, our data support that three systems function together to enable chromosome segregation in M. xanthus. ParABS constitutes the basic and essential machinery. SMC and the BacNOP/PadC scaffold have different yet redundant roles in chromosome segregation with SMC supporting individualization of daughter chromosomes and BacNOP/PadC making the ParABS system operate more robustly.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Myxococcus xanthus/metabolismo , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Segregação de Cromossomos/genética , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA , Complexos Multiproteicos , Myxococcus xanthus/genética , Ligação Proteica
5.
Chembiochem ; 21(1-2): 113-119, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31661184

RESUMO

Herein, the application of N-hydroxysuccinimide-modified phosphonamidate building blocks for the incorporation of cysteine-selective ethynylphosphonamidates into lysine residues of proteins, followed by thiol addition with small molecules and proteins, is reported. It is demonstrated that the building blocks significantly lower undesired homo-crosslinking side products that can occur with commonly applied succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) under physiological pH. The previously demonstrated stability of the phosphonamidate moiety additionally solves the problem of premature maleimide hydrolysis, which can hamper the efficiency of subsequent thiol addition. Furthermore, a method to separate the phosphonamidate enantiomers to be able to synthesize protein conjugates in a defined configuration has been developed. Finally, the building blocks are applied to the construction of functional antibody-drug conjugates, analogously to FDA-approved, SMCC-linked Kadcyla, and to the synthesis of a functional antibody-protein conjugate.


Assuntos
Amidas/química , Etilenoglicol/química , Proteínas de Fluorescência Verde/química , Ácidos Fosfóricos/química , Succinimidas/química , Linhagem Celular Tumoral , Humanos , Estrutura Molecular
6.
Methods Mol Biol ; 2033: 167-189, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31332754

RESUMO

Tub-tag labeling, a novel chemoenzymatic protein functionalization method, facilitates one-step fluorescent labeling of functional biomolecules. The enzyme tubulin tyrosine ligase incorporates coumarin-amino acids to the terminal carboxylic acid of proteins containing a short peptidic recognition sequence called Tub-tag. Here we describe the one-step Tub-tag protein modification protocol in detail and explain its utilization to generate fluorescently labeled proteins for advanced applications in imaging and diagnostics.


Assuntos
Peptídeo Sintases/química , Peptídeos/química , Proteínas/isolamento & purificação , Coloração e Rotulagem/métodos , Aminoácidos/química , Corantes Fluorescentes/química , Proteínas/química
7.
Angew Chem Int Ed Engl ; 58(34): 11631-11636, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31250955

RESUMO

Requirements for novel bioconjugation reactions for the synthesis of antibody-drug conjugates (ADCs) are exceptionally high, since conjugation selectivity as well as the stability and hydrophobicity of linkers and payloads drastically influence the performance and safety profile of the final product. We report Cys-selective ethynylphosphonamidates as new reagents for the rapid generation of efficacious ADCs from native non-engineered monoclonal antibodies through a simple one-pot reduction and alkylation. Ethynylphosphonamidates can be easily substituted with hydrophilic residues, giving rise to electrophilic labeling reagents with tunable solubility properties. We demonstrate that ethynylphosphonamidate-linked ADCs have excellent properties for next-generation antibody therapeutics in terms of serum stability and in vivo antitumor activity.


Assuntos
Antineoplásicos Imunológicos/química , Cisteína/química , Etilenoglicol/química , Imunoconjugados/metabolismo , Organofosfonatos/química , Receptor ErbB-2/imunologia , Trastuzumab/química , Antineoplásicos Imunológicos/imunologia , Humanos , Imunoconjugados/química , Trastuzumab/imunologia , Células Tumorais Cultivadas
8.
Angew Chem Int Ed Engl ; 58(34): 11625-11630, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-30828930

RESUMO

We describe a new technique in protein synthesis that extends the existing repertoire of methods for protein modification: A chemoselective reaction that induces reactivity for a subsequent bioconjugation. An azide-modified building block reacts first with an ethynylphosphonite through a Staudinger-phosphonite reaction (SPhR) to give an ethynylphosphonamidate. The resulting electron-deficient triple bond subsequently undergoes a cysteine-selective reaction with proteins or antibodies. We demonstrate that ethynylphosphonamidates display excellent cysteine-selective reactivity combined with superior stability of the thiol adducts, when compared to classical maleimide linkages. This turns our technique into a versatile and powerful tool for the facile construction of stable functional protein conjugates.


Assuntos
Antineoplásicos Imunológicos/química , Cisteína/química , Imunoconjugados/metabolismo , Organofosfonatos/química , Receptor ErbB-2/imunologia , Compostos de Sulfidrila/química , Trastuzumab/química , Antineoplásicos Imunológicos/metabolismo , Cisteína/metabolismo , Humanos , Imunoconjugados/química , Iodoacetamida/química , Iodoacetamida/metabolismo , Maleimidas/química , Maleimidas/metabolismo , Organofosfonatos/metabolismo , Compostos de Sulfidrila/metabolismo , Trastuzumab/metabolismo
9.
Angew Chem Int Ed Engl ; 57(9): 2314-2333, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28913971

RESUMO

Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.


Assuntos
Neoplasias/imunologia , Anticorpos de Domínio Único/química , Aminoácidos/química , Aminoácidos/imunologia , Animais , Antígenos/química , Antígenos/imunologia , Humanos , Espectrometria de Massas , Neoplasias/patologia , Anticorpos de Domínio Único/imunologia
10.
Nat Chem ; 9(8): 762-771, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28754949

RESUMO

Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.


Assuntos
Membrana Celular/metabolismo , Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Anticorpos de Domínio Único/metabolismo , Células 3T3 , Animais , Antígenos/imunologia , Antígenos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Nucléolo Celular/metabolismo , Peptídeos Penetradores de Células/síntese química , Portadores de Fármacos/síntese química , Proteínas de Fluorescência Verde/imunologia , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG/farmacocinética , Camundongos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Proteína Supressora de Tumor p53/metabolismo
11.
J Clin Immunol ; 36 Suppl 1: 100-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27003914

RESUMO

Antibody drug conjugates (ADCs), a promising class of cancer biopharmaceuticals, combine the specificity of therapeutic antibodies with the pharmacological potency of chemical, cytotoxic drugs. Ever since the first ADCs on the market, a plethora of novel ADC technologies has emerged, covering as diverse aspects as antibody engineering, chemical linker optimization and novel conjugation strategies, together aiming at constantly widening the therapeutic window for ADCs. This review primarily focuses on novel chemical and biotechnological strategies for the site-directed attachment of drugs that are currently validated for 2nd generation ADCs to promote conjugate homogeneity and overall stability.


Assuntos
Biotecnologia , Imunoconjugados , Aminoácidos/química , Animais , Biotecnologia/métodos , Biotecnologia/tendências , Dissulfetos/química , Humanos , Imunoconjugados/química , Imunoconjugados/genética , Terapia de Alvo Molecular/tendências
12.
Curr Opin Chem Biol ; 22: 62-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25285752

RESUMO

The quest to enlarge the molecular space of functional biomolecules has led to the discovery of selective, mild and high-yielding chemical reactions for the modification of peptides and proteins. These conjugation methods have recently become even more advanced with the advent of modern biochemical techniques such as unnatural protein expression or enzymatic reactions that allow the site-specific modification of proteins. Within this overview, we will highlight recent examples that describe the site-specific functionalization of proteins. These examples go beyond the straightforward attachment of a given functional moiety to the protein backbone by employing either an innovative linker-design or by novel conjugation chemistry, where the modification reaction itself is responsible for the (altered) functional behaviour of the biomolecule. The examples covered herein include 'turn-on' probes for cellular imaging with low levels of background fluorescence, branched or cleavable polymer-protein conjugates of high stability within a cellular environment, the installation of natural occurring posttranslational modifications to help understand their role in complex cellular environments and finally the engineering of novel antibody drug conjugates to facilitate target specific drug release.


Assuntos
Corantes Fluorescentes/química , Peptídeos/química , Proteínas/química , Animais , Corantes Fluorescentes/síntese química , Humanos , Imunoconjugados/química , Imunoconjugados/metabolismo , Peptídeos/síntese química , Peptídeos/metabolismo , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Processamento de Proteína Pós-Traducional , Proteínas/síntese química , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA