Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 294(24): 9367-9376, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31043481

RESUMO

The biological route for nitrogen gas entering the biosphere is reduction to ammonia by the nitrogenase enzyme, which is inactivated by oxygen. Three types of nitrogenase exist, the least-studied of which is the iron-only nitrogenase. The Anf3 protein in the bacterium Rhodobacter capsulatus is essential for diazotrophic (i.e. nitrogen-fixing) growth with the iron-only nitrogenase, but its enzymatic activity and function are unknown. Here, we biochemically and structurally characterize Anf3 from the model diazotrophic bacterium Azotobacter vinelandii Determining the Anf3 crystal structure to atomic resolution, we observed that it is a dimeric flavocytochrome with an unusually close interaction between the heme and the FAD cofactors. Measuring the reduction potentials by spectroelectrochemical redox titration, we observed values of -420 ± 10 and -330 ± 10 mV for the two FAD potentials and -340 ± 1 mV for the heme. We further show that Anf3 accepts electrons from spinach ferredoxin and that Anf3 consumes oxygen without generating superoxide or hydrogen peroxide. We predict that Anf3 protects the iron-only nitrogenase from oxygen inactivation by functioning as an oxidase in respiratory protection, with flavodoxin or ferredoxin as the physiological electron donors.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Ferro/metabolismo , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Oxigênio/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , Fixação de Nitrogênio , Oxirredução , Oxirredutases/química , Conformação Proteica
2.
Methods Mol Biol ; 1276: 53-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25665558

RESUMO

Here we describe approaches and methods to assaying in vitro the major variant bacterial sigma factor, Sigma 54 (σ(54)), in a purified system. We include the complete transcription system, binding interactions between σ54 and its activators, as well as the self-assembly and the critical ATPase activity of the cognate activators which serve to remodel the closed promoter complexes. We also present in vivo methodologies that are used to study the impact of physiological processes, metabolic states, global signalling networks, and cellular architecture on the control of σ(54)-dependent gene expression.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Biologia Molecular/métodos , RNA Polimerase Sigma 54/metabolismo , Transcrição Gênica/fisiologia , Adenosina Trifosfatases/química , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Cromatografia em Camada Fina , Pegada de DNA/métodos , Proteínas de Ligação a DNA/isolamento & purificação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Técnicas In Vitro , Dados de Sequência Molecular , RNA Polimerase Sigma 54/química , Transativadores/isolamento & purificação , Fatores de Transcrição/isolamento & purificação
3.
Mol Microbiol ; 73(4): 519-33, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19486295

RESUMO

Molecular machines belonging to the AAA+ superfamily of ATPases use NTP hydrolysis to remodel their versatile substrates. The presence of an insertion sequence defines the major phylogenetic pre-sensor I insertion (pre-SIi) AAA+ superclade. In the bacterial sigma(54)-dependent enhancer binding protein phage shock protein F (PspF) the pre-SIi loop adopts different conformations depending on the nucleotide-bound state. Single amino acid substitutions within the dynamic pre-SIi loop of PspF drastically change the ATP hydrolysis parameters, indicating a structural link to the distant hydrolysis site. We used a site-specific protein-DNA proximity assay to measure the contribution of the pre-SIi loop in sigma(54)-dependent transcription and demonstrate that the pre-SIi loop is a major structural feature mediating nucleotide state-dependent differential engagement with Esigma(54). We suggest that much, if not all, of the action of the pre-SIi loop is mediated through the L1 loop and relies on a conserved molecular switch, identified in a crystal structure of one pre-SIi variant and in accordance with the high covariance between some pre-SIi residues and distinct residues outside the pre-SIi sequence.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Mutagênese Insercional , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Hidrólise , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/metabolismo , Transativadores/genética , Ativação Transcricional
4.
J Mol Biol ; 381(1): 1-12, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18599077

RESUMO

AAA(+) proteins are ubiquitous mechanochemical ATPases that use energy from ATP hydrolysis to remodel their versatile substrates. The AAA(+) characteristic hexameric ring assemblies raise important questions about if and how six often identical subunits coordinate hydrolysis and associated motions. The PspF AAA(+) domain, PspF(1-275), remodels the bacterial sigma(54)-RNA polymerase to activate transcription. Analysis of ATP substrate inhibition kinetics on ATP hydrolysis in hexameric PspF(1-275) indicates negative homotropic effects between subunits. Functional determinants required for allosteric control identify: (i) an important link between the ATP bound ribose moiety and the SensorII motif that would allow nucleotide-dependent *-helical */beta subdomain dynamics; and (ii) establishes a novel regulatory role for the SensorII helix in PspF, which may apply to other AAA(+) proteins. Consistent with functional data, homotropic control appears to depend on nucleotide state-dependent subdomain angles imposing dynamic symmetry constraints in the AAA(+) ring. Homotropic coordination is functionally important to remodel the sigma(54) promoter. We propose a structural symmetry-based model for homotropic control in the AAA(+) characteristic ring architecture.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Cromatografia em Gel , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Hidrólise , Cinética , Modelos Moleculares , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase Sigma 54/genética , RNA Polimerase Sigma 54/metabolismo , Transativadores/química , Transativadores/genética , Transativadores/isolamento & purificação , Transativadores/metabolismo
5.
Biochem Soc Trans ; 36(Pt 1): 83-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18208391

RESUMO

bEBPs (bacterial enhancer-binding proteins) are AAA+ (ATPase associated with various cellular activities) transcription activators that activate gene transcription through a specific bacterial sigma factor, sigma(54). Sigma(54)-RNAP (RNA polymerase) binds to promoter DNA sites and forms a stable closed complex, unable to proceed to transcription. The closed complex must be remodelled using energy from ATP hydrolysis provided by bEBPs to melt DNA and initiate transcription. Recently, large amounts of structural and biochemical data have produced insights into how ATP hydrolysis within the active site of bEBPs is coupled to the re-modelling of the closed complex. In the present article, we review some of the key nucleotides, mutations and techniques used and how they have contributed towards our understanding of the function of bEBPs.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Hidrólise , Nucleotídeos/metabolismo , Conformação Proteica
6.
J Biol Chem ; 282(13): 9825-9833, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17242399

RESUMO

Transcriptional initiation invariably involves the transition from a closed RNA polymerase (RNAP) promoter complex to a transcriptional competent open complex. Activators of the bacterial sigma(54)-RNAP are AAA+ proteins that couple ATP hydrolysis to restructure the sigma(54)-RNAP promoter complex. Structures of the sigma(54) activator PspF AAA+ domain (PspF(1-275)) bound to sigma(54) show two loop structures proximal to sigma(54) as follows: the sigma(54) contacting the GAFTGA loop 1 structure and loop 2 that classifies sigma(54) activators as pre-sensor 1 beta-hairpin AAA+ proteins. We report activities for PspF(1-275) mutated in the AAA+ conserved sensor I threonine/asparagine motif (PspF(1-275)(T148A), PspF(1-275)(N149A), and PspF(1-275)(N149S)) within the second region of homology. We show that sensor I asparagine plays a direct role in ATP hydrolysis. However, low hydrolysis rates are sufficient for functional output in vitro. In contrast, PspF(1-275)(T148A) has severe defects at the distinct step of sigma(54) promoter restructuring. This defect is not because of the failure of PspF(1-275)(T148A) to stably engage with the closed sigma(54) promoter, indicating (i) an important role in ATP hydrolysis-associated motions during energy coupling for remodeling and (ii) distinguishing PspF(1-275)(T148A) from PspF(1-275) variants involved in signaling to the GAFTGA loop 1, which fail to stably engage with the promoter. Activities of loop 2 PspF(1-275) variants are similar to those of PspF(1-275)(T148A) suggesting a functional signaling link between Thr(148) and loop 2. In PspF(1-275) this link relies on the conserved nucleotide state-dependent interaction between the Walker B residue Glu(108) and Thr(148). We propose that hydrolysis is relayed via Thr(148) to loop 2 creating motions that provide mechanical force to the GAFTGA loop 1 that contacts sigma(54).


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiologia , RNA Polimerase Sigma 54/metabolismo , Treonina/fisiologia , Transativadores/fisiologia , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hidrólise , RNA Polimerase Sigma 54/química , Treonina/genética , Transativadores/genética
7.
J Biol Chem ; 281(46): 34997-5007, 2006 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-16973614

RESUMO

The catalytic AAA+ domain (PspF1-275) of an enhancer-binding protein is necessary and sufficient to contact sigma54-RNA polymerase holoenzyme (Esigma54), remodel it, and in so doing catalyze open promoter complex formation. Whether ATP binding and hydrolysis is coordinated between subunits of PspF and the precise nature of the nucleotide(s) bound to the oligomeric forms responsible for substrate remodeling are unknown. We demonstrate that ADP stimulates the intrinsic ATPase activity of PspF1-275 and propose that this heterogeneous nucleotide occupancy in a PspF1-275 hexamer is functionally important for specific activity. Binding of ADP and ATP triggers the formation of functional PspF1-275 hexamers as shown by a gain of specific activity. Furthermore, ATP concentrations congruent with stoichiometric ATP binding to PspF1-275 inhibit ATP hydrolysis and Esigma54-promoter open complex formation. Demonstration of a heterogeneous nucleotide-bound state of a functional PspF1-275.Esigma54 complex provides clear biochemical evidence for heterogeneous nucleotide occupancy in this AAA+ protein. Based on our data, we propose a stochastic nucleotide binding and a coordinated hydrolysis mechanism in PspF1-275 hexamers.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Domínio Catalítico , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Plasmídeos , Ligação Proteica , Estrutura Terciária de Proteína , Transativadores/química , Transcrição Gênica
8.
J Struct Biol ; 156(1): 190-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16531068

RESUMO

Initiation of transcription is a major point of transcriptional regulation and invariably involves the transition from a closed to an open RNA polymerase (RNAP) promoter complex. In the case of the sigma(54)-RNAP, this multi step process requires energy, provided by ATP hydrolysis occurring within the AAA+ domain of enhancer binding proteins (EBPs). Typically, EBPs have an N-terminal regulatory domain, a central AAA+ domain that directly contacts sigma(54) and a C-terminal DNA binding domain. The following AAA+ EBP crystal structures have recently become available: heptameric AAA+ domains of NtrC1 and dimeric NtrC1 with its regulatory domain, hexameric AAA+ domains of ZraR with DNA binding domains, apo and nucleotide bound forms of the AAA+ domain of PspF as well as a cryo-EM structure of the AAA+ domain of PspF complexed with sigma(54). These AAA+ domains reveal the structural conservation between EBPs and other AAA+ domains. EBP specific structural features involved in substrate remodelling are located proximal to the pore of the hexameric ring. Parallels with the substrate binding elements near the central pore of other AAA+ members are drawn. We propose a structural model of EBPs in complex with a sigma(54)-RNAP-promoter complex.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ativação Transcricional , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Sequência Consenso , Sequência Conservada , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Hidrólise , Modelos Químicos , Dados de Sequência Molecular , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
9.
J Mol Biol ; 357(2): 481-92, 2006 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-16430918

RESUMO

Bacterial enhancer-binding proteins (EBP) activate transcription by hydrolyzing ATP to restructure the sigma(54)-RNA polymerase-promoter complex. We compare six high resolution structures (<2.1 A) of the AAA(+) domain of EBP phage shock protein F (PspF) including apo, AMPPNP, Mg(2+)-ATP, and ADP forms. These structures permit a description of the atomic details underpinning the origins of the conformational changes occurring during ATP hydrolysis. Conserved regions of PspF's AAA(+) domain respond distinctively to nucleotide binding and hydrolysis, suggesting functional roles during the hydrolysis cycle, which completely agree with those derived from activities of PspF mutated at these positions. We propose a putative atomic switch that is responsible for coupling structural changes in the nucleotide-binding site to the repositioning of the sigma(54)-interacting loops. Striking similarities in nucleotide-specific conformational changes and atomic switch exist between PspF and the large T antigen helicase, suggesting conservation in the origin of those events amongst AAA(+) proteins.


Assuntos
Proteínas de Escherichia coli/química , Nucleotídeos/metabolismo , Conformação Proteica , Transativadores/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Magnésio/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , RNA Polimerase Sigma 54/química , RNA Polimerase Sigma 54/metabolismo , Transdução de Sinais , Transativadores/genética
10.
Science ; 307(5717): 1972-5, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15790859

RESUMO

Activators of bacterial sigma54-RNA polymerase holoenzyme are mechanochemical proteins that use adenosine triphosphate (ATP) hydrolysis to activate transcription. We have determined by cryogenic electron microscopy (cryo-EM) a 20 angstrom resolution structure of an activator, phage shock protein F [PspF(1-275)], which is bound to an ATP transition state analog in complex with its basal factor, sigma54. By fitting the crystal structure of PspF(1-275) at 1.75 angstroms into the EM map, we identified two loops involved in binding sigma54. Comparing enhancer-binding structures in different nucleotide states and mutational analysis led us to propose nucleotide-dependent conformational changes that free the loops for association with sigma54.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Conformação Proteica , Transativadores/química , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas PII Reguladoras de Nitrogênio , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54 , Fator sigma/química , Fator sigma/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
11.
J Mol Biol ; 338(5): 863-75, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15111053

RESUMO

Transcription activation by bacterial sigma(54)-dependent enhancer-binding proteins (EBPs) requires their tri-nucleotide hydrolysis to restructure the sigma(54) RNA polymerase (RNAP). EBPs share sequence similarity with guanine nucleotide binding-proteins and ATPases associated with various cellular activities (AAA) proteins, especially in the mononucleotide binding P-loop fold. Using the phage shock protein F (PspF) EBP, we identify P-loop residues responsible for nucleotide binding and hydrolysis, consistent with their roles in other P-loop NTPases. We show the refined low-resolution structure of an EBP, PspF, revealing a hexameric ring organisation characteristic of AAA proteins. Functioning of EBPs involves ATP binding, higher oligomer formation and ATP hydrolysis coupled to the restructuring of the RNAP. This is thought to be a highly coordinated multi-step process, but the nucleotide-driven mechanism of oligomerisation and ATP hydrolysis is little understood. Our kinetic and structural data strongly suggest that three PspF dimers assemble to form a hexamer upon nucleotide binding. During the ATP hydrolysis cycle, both ATP and ADP are bound to oligomeric PspF, in line with a sequential hydrolysis cycle. We identify a putative R-finger, and show its involvement in ATP hydrolysis. Substitution of this arginine residue results in nucleotide-independent formation of hexameric rings, structurally linking the putative R-finger and, by inference, a specific nucleotide interaction to the control of PspF oligomerisation.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Bacterianas Próton-Translocadoras/metabolismo , Proteínas de Ligação a DNA , Proteínas de Escherichia coli/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Difosfato de Adenosina/análogos & derivados , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Nucleotídeos/metabolismo , Compostos Organometálicos/metabolismo , RNA Polimerase Sigma 54 , Fator sigma/metabolismo
12.
Proc Natl Acad Sci U S A ; 100(5): 2278-83, 2003 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-12601152

RESUMO

Members of the protein family called ATPases associated with various cellular activities (AAA(+)) play a crucial role in transforming chemical energy into biological events. AAA(+) proteins are complex molecular machines and typically form ring-shaped oligomeric complexes that are crucial for ATPase activity and mechanism of action. The Escherichia coli transcription activator phage shock protein F (PspF) is an AAA(+) mechanochemical enzyme that functions to sense and relay the energy derived from nucleoside triphosphate hydrolysis to catalyze transcription by the sigma(54)-RNA polymerase. Closed promoter complexes formed by the sigma(54)-RNA polymerase are substrates for the action of PspF. By using a protein fragmentation approach, we identify here at least one sigma(54)-binding surface in the PspF AAA(+) domain. Results suggest that ATP hydrolysis by PspF is coupled to the exposure of at least one sigma(54)-binding surface. This nucleotide hydrolysis-dependent presentation of a substrate binding surface can explain why complexes that form between sigma(54) and PspF are transient and could be part of a mechanism used generally by other AAA(+) proteins to regulate activity.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Ligação a DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Fator sigma/metabolismo , Transativadores/química , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , DNA/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Hidrólise , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , RNA Polimerase Sigma 54 , Transativadores/metabolismo , Transcrição Gênica , Ativação Transcricional , beta-Galactosidase/metabolismo
13.
J Mol Biol ; 320(1): 23-37, 2002 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-12079332

RESUMO

The PspA protein, a negative regulator of the Escherichia coli phage shock psp operon, is produced when virulence factors are exported through secretins in many Gram-negative pathogenic bacteria and its homologue in plants, VIPP1, plays a critical role in thylakoid biogenesis, essential for photosynthesis. Activation of transcription by the enhancer-dependent bacterial sigma(54) containing RNA polymerase occurs through ATP hydrolysis-driven protein conformational changes enabled by activator proteins that belong to the large AAA(+) mechanochemical protein family. We show that PspA directly and specifically acts upon and binds to the AAA(+) domain of the PspF transcription activator. Interactions involving PspF and nucleotide are changed by the action of PspA. These changes and the complexes that form between PspF and PspA can explain how PspA exerts its negative effects upon transcription activated by PspF, and are of significance when considering how activities of other AAA(+) proteins might be controlled.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Transativadores/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , DNA/genética , DNA/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Proteínas de Choque Térmico/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase Sigma 54 , Fator sigma/metabolismo , Transativadores/genética , Transcrição Gênica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA