Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 17(4): e1009496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872335

RESUMO

LINE-1 (L1) retrotransposons are autonomous transposable elements that can affect gene expression and genome integrity. Potential consequences of exogenous viral infections for L1 activity have not been studied to date. Here, we report that hepatitis C virus (HCV) infection causes a significant increase of endogenous L1-encoded ORF1 protein (L1ORF1p) levels and translocation of L1ORF1p to HCV assembly sites at lipid droplets. HCV replication interferes with retrotransposition of engineered L1 reporter elements, which correlates with HCV RNA-induced formation of stress granules and can be partially rescued by knockdown of the stress granule protein G3BP1. Upon HCV infection, L1ORF1p localizes to stress granules, associates with HCV core in an RNA-dependent manner and translocates to lipid droplets. While HCV infection has a negative effect on L1 mobilization, L1ORF1p neither restricts nor promotes HCV infection. In summary, our data demonstrate that HCV infection causes an increase of endogenous L1 protein levels and that the observed restriction of retrotransposition of engineered L1 reporter elements is caused by sequestration of L1ORF1p in HCV-induced stress granules.


Assuntos
Carcinoma Hepatocelular/virologia , DNA Helicases/metabolismo , Hepacivirus/fisiologia , Hepatite C/virologia , Neoplasias Hepáticas/virologia , Elementos Nucleotídeos Longos e Dispersos/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Ribonucleoproteínas/metabolismo , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/virologia , DNA Helicases/genética , Humanos , Gotículas Lipídicas/virologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Ribonucleoproteínas/genética
2.
Mol Brain ; 13(1): 154, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33187550

RESUMO

Long interspersed element-1 (LINE-1/L1) is the only autonomous transposable element in the human genome that currently mobilises in both germline and somatic tissues. Recent studies have identified correlations between altered retrotransposon expression and the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS) in a subset of patients. The risk of an individual developing ALS is dependent on an interaction of genetic variants and subsequent modifiers during life. These modifiers could include environmental factors, which can lead to epigenetic and genomic changes, such as somatic mutations, occurring in the neuronal cells that degenerate as the disease develops. There are more than 1 million L1 copies in the human genome today, but only 80-100 L1 loci in the reference genome are considered to be retrotransposition-competent (RC) and an even smaller number of these RC-L1s loci are highly active. We hypothesise that RC-L1s could affect normal cellular function through their mutagenic potential conferred by their ability to retrotranspose in neuronal cells and through DNA damage caused by the endonuclease activity of the L1-encoded ORF2 protein. To investigate whether either an increase in the genomic burden of RC-L1s or epigenetic changes to RC-L1s altering their expression, could play a role in disease development, we chose a set of seven well characterised genomic RC-L1 loci that were reported earlier to be highly active in a cellular L1 retrotransposition reporter assay or serve as major source elements for germline and/or somatic retrotransposition events. Analysis of the insertion allele frequency of five polymorphic RC-L1s, out of the set of seven, for their presence or absence, did not identify an increased number individually or when combined in individuals with the disease. However, we did identify reduced levels of methylation of RC-L1s in the motor cortex of those individuals with both familial and sporadic ALS compared to control brains. The changes to the regulation of the loci encompassing these RC-L1s demonstrated tissue specificity and could be related to the disease process.


Assuntos
Esclerose Lateral Amiotrófica/genética , Metilação de DNA/genética , Loci Gênicos , Elementos Nucleotídeos Longos e Dispersos/genética , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Frequência do Gene/genética , Impressão Genômica , Heterozigoto , Humanos , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Proteínas Centrais de snRNP/genética
3.
Mob DNA ; 10: 9, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30899334

RESUMO

Human stem cells harbor significant potential for basic and clinical translational research as well as regenerative medicine. Currently ~ 3000 adult and ~ 30 pluripotent stem cell-based, interventional clinical trials are ongoing worldwide, and numbers are increasing continuously. Although stem cells are promising cell sources to treat a wide range of human diseases, there are also concerns regarding potential risks associated with their clinical use, including genomic instability and tumorigenesis concerns. Thus, a deeper understanding of the factors and molecular mechanisms contributing to stem cell genome stability are a prerequisite to harnessing their therapeutic potential for degenerative diseases. Chemical and physical factors are known to influence the stability of stem cell genomes, together with random mutations and Copy Number Variants (CNVs) that accumulated in cultured human stem cells. Here we review the activity of endogenous transposable elements (TEs) in human multipotent and pluripotent stem cells, and the consequences of their mobility for genomic integrity and host gene expression. We describe transcriptional and post-transcriptional mechanisms antagonizing the spread of TEs in the human genome, and highlight those that are more prevalent in multipotent and pluripotent stem cells. Notably, TEs do not only represent a source of mutations/CNVs in genomes, but are also often harnessed as tools to engineer the stem cell genome; thus, we also describe and discuss the most widely applied transposon-based tools and highlight the most relevant areas of their biomedical applications in stem cells. Taken together, this review will contribute to the assessment of the risk that endogenous TE activity and the application of genetically engineered TEs constitute for the biosafety of stem cells to be used for substitutive and regenerative cell therapies.

4.
Front Microbiol ; 9: 2088, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30233553

RESUMO

The most common mutational signature in urothelial carcinoma (UC), the most common type of urinary bladder cancer is assumed to be caused by the misdirected activity of APOBEC3 (A3) cytidine deaminases, especially A3A or A3B, which are known to normally restrict the propagation of exogenous viruses and endogenous retroelements such as LINE-1 (L1). The involvement of A3 proteins in urothelial carcinogenesis is unexpected because, to date, UC is thought to be caused by chemical carcinogens rather than viral activity. Therefore, we explored the relationship between A3 expression and L1 activity, which is generally upregulated in UC. We found that UC cell lines highly express A3B and in some cases A3G, but not A3A, and exhibit corresponding cytidine deamination activity in vitro. While we observed evidence suggesting that L1 expression has a weak positive effect on A3B and A3G expression and A3B promoter activity, neither efficient siRNA-mediated knockdown nor overexpression of functional L1 elements affected catalytic activity of A3 proteins consistently. However, L1 knockdown diminished proliferation of a UC cell line exhibiting robust endogenous L1 expression, but had little impact on a cell line with low L1 expression levels. Our results indicate that UC cells express A3B at levels exceeding A3A levels by far, making A3B the prime candidate for causing genomic mutations. Our data provide evidence that L1 activation constitutes only a minor and negligible factor involved in induction or upregulation of endogenous A3 expression in UC.

5.
Biologicals ; 56: 67-83, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30150108

RESUMO

Sessions included an overview of past cell therapy (CT) conferences sponsored by the International Alliance for Biological Standardization (IABS). The sessions highlighted challenges in the field of human pluripotent stem cells (hPSCs) and also addressed specific points on manufacturing, bioanalytics and comparability, tumorigenicity testing, storage, and shipping. Panel discussions complemented the presentations. The conference concluded that a range of new standardization groups is emerging that could help the field, but ways must be found to ensure that these efforts are coordinated. In addition, there are opportunities for regulatory convergence starting with a gap analysis of existing guidelines to determine what might be missing and what issues might be creating divergence. More specific global regulatory guidance, preferably from WHO, would be welcome. IABS and the California Institute for Regenerative Medicine (CIRM) will explore with stakeholders the development of a practical and innovative road map to support early CT product (CTP) developers.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Células-Tronco Pluripotentes , Testes de Carcinogenicidade , Guias como Assunto , Humanos , Controle de Qualidade , Medicina Regenerativa
6.
Stem Cells Dev ; 25(9): 729-39, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26956718

RESUMO

Cultures of induced pluripotent stem cells (iPSCs) often contain cells of varying grades of pluripotency. We present novel lentiviral vectors targeted to the surface receptor CD30 (CD30-LV) to transfer genes into iPSCs that are truly pluripotent as demonstrated by marker gene expression. We demonstrate that CD30 expression is restricted to SSEA4(high) cells of human iPSC cultures and a human embryonic stem cell line. When CD30-LV was added to iPSCs during routine cultivation, efficient and exclusive transduction of cells positive for the pluripotency marker Oct-4 was achieved, while retaining their pluripotency. When added during the reprogramming process, CD30-LV solely transduced cells that became fully reprogrammed iPSCs as confirmed by co-expression of endogenous Nanog and the reporter gene. Thus, CD30-LV may serve as novel tool for the selective gene transfer into PSCs with broad applications in basic and therapeutic research.


Assuntos
Terapia Genética , Vetores Genéticos/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígeno Ki-1/metabolismo , Lentivirus/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Reprogramação Celular , Células Clonais , Humanos , Transdução Genética
7.
Oncotarget ; 7(4): 4048-61, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26716650

RESUMO

LINE-1 (L1) retrotransposons are a source of endogenous reverse transcriptase (RT) activity, which is expressed as part of the L1-encoded ORF2 protein (L1-ORF2p). L1 elements are highly expressed in many cancer types, while being silenced in most differentiated somatic tissues. We previously found that RT inhibition reduces cell proliferation and promotes differentiation in neoplastic cells, indicating that high endogenous RT activity promotes cancer growth. Here we investigate the expression of L1-ORF2p in several human types of cancer.We have developed a highly specific monoclonal antibody (mAb chA1-L1) to study ORF2p expression and localization in human cancer cells and tissues.We uncover new evidence for high levels of L1-ORF2p in transformed cell lines and staged epithelial cancer tissues (colon, prostate, lung and breast) while no or only basal ORF2p expression was detected in non-transformed cells. An in-depth analysis of colon and prostate tissues shows ORF2p expression in preneoplastic stages, namely transitional mucosa and prostate intraepithelial neoplasia (PIN), respectively.Our results show that L1-ORF2p is overexpressed in tumor and in preneoplastic colon and prostate tissues; this latter finding suggests that ORF2p could be considered as a potential early diagnostic biomarker.


Assuntos
Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/metabolismo , Desoxirribonuclease I/metabolismo , Endonucleases/metabolismo , Neoplasias da Próstata/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenoma/metabolismo , Adenoma/patologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Formação de Anticorpos , Western Blotting , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/patologia , Endonucleases/imunologia , Imunofluorescência , Humanos , Técnicas Imunoenzimáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/patologia , DNA Polimerase Dirigida por RNA/imunologia , Análise Serial de Tecidos , Células Tumorais Cultivadas
8.
Histochem Cell Biol ; 134(6): 581-9, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21069374

RESUMO

Long interspersed nuclear element-1 (LINE-1, L1) is a retrotransposon which affects the human genome by a variety of mechanisms. While LINE-1 expression is suppressed in the most somatic human cells, LINE-1 elements are activated in human cancer. Recently, high accumulation of LINE-1-encoded ORF1p and ORF2p in endothelial cells of mature human blood vessels was described. Here, we demonstrate that LINE-1 de novo retrotransposition events lead to a reduction of endothelial cell proliferation and migration in a porcine aortic endothelial (PAE) cell model. Cell cycle studies show a G0/G1 arrest in PAE cells harboring LINE-1 de novo retrotransposition events. Remarkably, in in situ analysis LINE-1-encoded ORF2p was not detectable in tumor blood vessels of different human organs while vascular endothelial cells of corresponding normal organs strongly expressed LINE-1 ORF2p. Quantitative RT-PCR analysis revealed that LINE-1 de novo retrotransposition influences selectively the expression of some angiogenic factors such as VEGF and Tie-2. Thus, our data suggest that LINE-1 de novo retrotransposition events might suppress angiogenesis and tumor vascularisation by reducing the angiogenic capacity of vascular endothelial cells.


Assuntos
Movimento Celular , Proliferação de Células , Endotélio Vascular/citologia , Elementos Nucleotídeos Longos e Dispersos/fisiologia , Animais , Endonucleases/biossíntese , Humanos , Antígeno Ki-67/biossíntese , Masculino , Neovascularização Patológica/genética , Neoplasias da Próstata , DNA Polimerase Dirigida por RNA/biossíntese , Receptor TIE-2/biossíntese , Suínos , Neoplasias Testiculares , Neoplasias da Bexiga Urinária , Fator A de Crescimento do Endotélio Vascular/biossíntese
9.
Nucleic Acids Res ; 36(2): 648-65, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18073200

RESUMO

LINE-1 (L1) is a highly successful autonomous non-LTR retrotransposon and a major force shaping mammalian genomes. Although there are about 600 000 L1 copies covering 23% of the rat genome, full-length rat L1s (L1Rn) with intact open reading frames (ORFs) representing functional master copies for retrotransposition have not been identified yet. In conjunction with studies to elucidate the role of L1 retrotransposons in tumorigenesis, we isolated and characterized 10 different cDNAs from transcribed full-length L1Rn elements in rat chloroleukemia (RCL) cells, each encoding intact ORF1 proteins (ORF1p). We identified the first functional L1Rn retrotransposon from this pool of cDNAs, determined its activity in HeLa cells and in the RCL cell line the cDNAs originated from and demonstrate that it is mobilized in the tumor cell line in which it is expressed. Furthermore, we generated monoclonal antibodies directed against L1Rn ORF1 and ORF2-encoded recombinant proteins, analyzed the expression of L1-encoded proteins and found ORF1p predominantly in the nucleus. Our results support the hypothesis that the reported explosive amplification of genomic L1Rn sequences after their transcriptional activation in RCL cells is based on L1 retrotransposition. Therefore, L1 activity might be one cause for genomic instability observed during the progression of leukemia.


Assuntos
Leucemia Experimental/genética , Elementos Nucleotídeos Longos e Dispersos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Núcleo Celular/química , Citoplasma/química , DNA Complementar/isolamento & purificação , Células HeLa , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta , Poliadenilação , Proteínas/análise , Proteínas/genética , Proteínas/metabolismo , Ratos , Transcrição Gênica
10.
Physiol Genomics ; 25(2): 314-24, 2006 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-16418318

RESUMO

Microarray analyses indicate that ischemic and pharmacological preconditioning suppress overexpression of the non-long terminal repeat retrotransposon long interspersed nuclear element 1 (LINE-1, L1) after ischemia-reperfusion in the rat heart. We tested whether L1 overexpression is mechanistically involved in postischemic myocardial damage. Isolated, perfused rat hearts were treated with antisense or scrambled oligonucleotides (ODNs) against L1 for 60 min and exposed to 40 min of ischemia followed by 60 min of reperfusion. Functional recovery and infarct size were measured. Effective nuclear uptake was determined by FITC-labeled ODNs, and downregulation of L1 transcription was confirmed by RT-PCR. Immunoblot analysis was used to assess changes in expression levels of the L1-encoded proteins ORF1p and ORF2p. Immunohistochemistry was performed to localize ORF1/2 proteins in cardiac tissue. Effects of ODNs on prosurvival protein kinase B (Akt/PKB) expression and activity were also determined. Antisense ODNs against L1 prevented L1 burst after ischemia-reperfusion. Inhibition of L1 increased Akt/PKBbeta expression, enhanced phosphorylation of PKB at serine 473, and markedly improved postischemic functional recovery and decreased infarct size. Antisense ODN-mediated protection was abolished by LY-294002, confirming the involvement of the Akt/PKB survival pathway. ORF1p and ORF2p were found to be expressed in rat heart. ORF1p showed a predominantly nuclear localization in cardiomyocytes, whereas ORF2p was exclusively present in endothelial cells. ORF1p levels increased in response to ischemia, which was reversed by antisense ODN treatment. No significant changes in ORF2p were noted. Our results demonstrate that L1 suppression favorably affects postischemic outcome in the heart. Modifying transcriptional activity of L1 may represent a novel anti-ischemic therapeutic strategy.


Assuntos
Elementos Nucleotídeos Longos e Dispersos/genética , Traumatismo por Reperfusão Miocárdica/enzimologia , Transdução de Sinais , Animais , Cromonas/farmacologia , Regulação para Baixo , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Técnicas In Vitro , Masculino , Morfolinas/farmacologia , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Miocárdio/patologia , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Fases de Leitura Aberta/genética , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas/genética , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
11.
J Biol Chem ; 279(26): 27753-63, 2004 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15056671

RESUMO

The LINE-1 (L1) family of non-long terminal repeat retrotransposons is a major force shaping mammalian genomes, and its members can alter the genome in many ways. Mutational analyses have shown that coexpression of functional proteins encoded by the two L1-specific open reading frames, ORF1 and ORF2, is an essential prerequisite for the propagation of L1 elements in the genome. However, all efforts to identify ORF2-encoded proteins have failed so far. Here, applying a novel antibody we report the presence of proteins encoded by ORF2 in a subset of cellular components of human male gonads. Immunohistochemical analyses revealed coexpression of ORF1 and ORF2 in prespermatogonia of fetal testis, in germ cells of adult testis, and in distinct somatic cell types, such as Leydig, Sertoli, and vascular endothelial cells. Coexpression of both proteins in male germ cells is necessary for the observed genomic expansion of the number of L1 elements. Peptide mass fingerprinting analysis of a approximately 130-kDa polypeptide isolated from cultured human dermal microvascular endothelial cells led to the identification of ORF2-encoded peptides. An isolated approximately 45-kDa polypeptide was shown to derive from nonfunctional copies of ORF2 coding regions. The presence of both ORF1- and ORF2-encoded proteins in vascular endothelial cells and its apparent association with certain stages of differentiation and maturation of blood vessels may have functional relevance for vasculogenesis and/or angiogenesis.


Assuntos
Feto/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , Fases de Leitura Aberta/genética , Biossíntese de Proteínas , Testículo/metabolismo , Adulto , Idoso , Sequência de Aminoácidos , Epididimo/citologia , Epididimo/metabolismo , Feto/citologia , Feto/fisiologia , Expressão Gênica , Humanos , Imuno-Histoquímica , Células Intersticiais do Testículo/metabolismo , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Mapeamento de Peptídeos , Placenta/citologia , Placenta/metabolismo , Proteínas/análise , Proteínas/genética , Células de Sertoli/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espermatozoides/metabolismo , Testículo/citologia , Testículo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA