Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
Aliment Pharmacol Ther ; 59(10): 1212-1222, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462919

RESUMO

BACKGROUND: The current management of metabolic dysfunction-associated steatotic liver disease (MASLD) relies on lifestyle intervention. Prior studies have shown that nutritional wheat amylase trypsin inhibitors (ATI) activate toll-like receptor 4 on intestinal myeloid cells to enhance intestinal and extra-intestinal inflammation, including the promotion of murine MASLD, insulin resistance and liver fibrosis. AIMS: We aimed to assess the impact of ATI (gluten)-free diet in liver as well as metabolic parameters of biopsy-proven MASLD patients. METHODS: We performed a 6-week, proof-of-concept 1:1 randomised controlled trial of an ATI-free diet. The controls followed a balanced diet recommended by the German Nutrition Society. We assessed changes in controlled attenuation parameter (CAP), body mass index (BMI) and homeostatic model assessment of insulin resistance (HOMA-IR). Patient-reported outcomes were assessed by the CLDQ-NASH questionnaire. Forty-five patients were consecutively enrolled (21 in the intervention arm and 24 in the control arm). RESULTS: Three patients from each arm discontinued the study. In the ATI-free diet group, a significant decrease in BMI (p = 0.018), CAP (p = 0.018) and HOMA-IR (p = 0.042) was observed at 6 weeks. The mean difference in CAP between the two arms at week 6 was 30.5 dB/m (p = 0.039), with a delta significantly higher in the ATI-free diet group (p = 0.043). Only an ATI-free diet could achieve a significant improvement in CLDQ-NASH domains (p value for total scoring: 0.013). CONCLUSIONS: A short-term ATI-free diet leads to significant improvements in liver and metabolic parameters, as well as patient-reported outcomes with good tolerability. A larger follow-up study is justified to corroborate these findings. CLINICAL TRIAL NUMBER: NCT04066400.


Assuntos
Dieta Livre de Glúten , Resistência à Insulina , Estudo de Prova de Conceito , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Resistência à Insulina/fisiologia , Adulto , Índice de Massa Corporal , Fígado Gorduroso/dietoterapia , Idoso , Glutens , Hepatopatia Gordurosa não Alcoólica/dietoterapia
2.
J Hepatol ; 80(2): 335-351, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37879461

RESUMO

The worldwide prevalence of non-alcoholic steatohepatitis (NASH) is increasing, causing a significant medical burden, but no approved therapeutics are currently available. NASH drug development requires histological analysis of liver biopsies by expert pathologists for trial enrolment and efficacy assessment, which can be hindered by multiple issues including sample heterogeneity, inter-reader and intra-reader variability, and ordinal scoring systems. Consequently, there is a high unmet need for accurate, reproducible, quantitative, and automated methods to assist pathologists with histological analysis to improve the precision around treatment and efficacy assessment. Digital pathology (DP) workflows in combination with artificial intelligence (AI) have been established in other areas of medicine and are being actively investigated in NASH to assist pathologists in the evaluation and scoring of NASH histology. DP/AI models can be used to automatically detect, localise, quantify, and score histological parameters and have the potential to reduce the impact of scoring variability in NASH clinical trials. This narrative review provides an overview of DP/AI tools in development for NASH, highlights key regulatory considerations, and discusses how these advances may impact the future of NASH clinical management and drug development. This should be a high priority in the NASH field, particularly to improve the development of safe and effective therapeutics.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Fígado/patologia , Inteligência Artificial , Biópsia , Prevalência
4.
Front Immunol ; 14: 1277808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116017

RESUMO

During fibrosis, (myo)fibroblasts deposit large amounts of extracellular matrix proteins, thereby replacing healthy functional tissue. In liver fibrosis, this leads to the loss of hepatocyte function, portal hypertension, variceal bleeding, and increased susceptibility to infection. At an early stage, liver fibrosis is a dynamic and reversible process, however, from the cirrhotic stage, there is significant progression to hepatocellular carcinoma. Both liver-resident macrophages (Kupffer cells) and monocyte-derived macrophages are important drivers of fibrosis progression, but can also induce its regression once triggers of chronic inflammation are eliminated. In liver cancer, they are attracted to the tumor site to become tumor-associated macrophages (TAMs) polarized towards a M2- anti-inflammatory/tumor-promoting phenotype. Besides their role in thrombosis and hemostasis, platelets can also stimulate fibrosis and tumor development by secreting profibrogenic factors and regulating the innate immune response, e.g., by interacting with monocytes and macrophages. Here, we review recent literature on the role of macrophages and platelets and their interplay in liver fibrosis and hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Varizes Esofágicas e Gástricas , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Varizes Esofágicas e Gástricas/metabolismo , Varizes Esofágicas e Gástricas/patologia , Neoplasias Hepáticas/patologia , Hemorragia Gastrointestinal , Cirrose Hepática , Macrófagos , Fibrose
5.
Cells ; 12(22)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37998354

RESUMO

AIM: The semisynthetic derivatives MePip-SF5 and isogarcinol, which are aligned with the natural products curcumin and garcinol, were tested for their antitumor effects in a preclinical model of pulmonary melanoma metastasis. METHODS AND RESULTS: MePip-SF5 was almost five times more effective in inhibiting B16F10 melanoma cell proliferation than its original substance of curcumin (IC50 MePip-SF5 2.8 vs. 13.8 µM). Similarly, the melanoma cytotoxicity of isogarcinol was increased by 40% compared to garcinol (IC50 3.1 vs. 2.1 µM). The in vivo toxicity of both drugs was assessed in healthy C57BL/6 mice challenged with escalating doses. Isogarcinol induced toxicity above a dose of 15 mg/kg, while MePip-SF5 showed no in vivo toxicity up to 60 mg/kg. Both drugs were tested in murine pulmonary metastatic melanoma. C57BL/6 mice (n = 10) received 500,000 B16F10 melanoma cells intravenously. After intraperitoneal injection of MePip-SF5 (60 mg/kg) or isorgarcinol (15 mg/kg) at days 8, 11 and 14 and sacrifice at day 16, the MePip-SF5-treated mice showed a significantly (p < 0.05) lower pulmonary macroscopic and microscopic tumor load than the vehicle-treated controls, whereas isogarcinol was ineffective. The pulmonary RNA levels of the mitosis marker Bub1 and the inflammatory markers TNFα and Ccl3 were significantly (p < 0.05) reduced in the MePip-SF5-treated mice. Both drugs were well tolerated, as shown by an organ inspection and normal liver- and kidney-related serum parameters. CONCLUSIONS: The novel curcuminoid MePip-SF5 showed a convincing antimetastatic effect and a lack of systemic toxicity in a relevant preclinical model of metastasized melanoma.


Assuntos
Curcumina , Neoplasias Pulmonares , Melanoma , Animais , Camundongos , Curcumina/farmacologia , Curcumina/uso terapêutico , Diarileptanoides/uso terapêutico , Camundongos Endogâmicos C57BL , Melanoma/tratamento farmacológico , Melanoma/patologia , Neoplasias Pulmonares/patologia
6.
Front Immunol ; 14: 1253649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37818371

RESUMO

Introduction: Scurfy mice have a complete deficiency of functional regulatory T cells (Treg) due to a frameshift mutation in the Foxp3 gene. The impaired immune homeostasis results in a lethal lymphoproliferative disorder affecting multiple organs, including the liver. The autoimmune pathology in scurfy mice is in part accompanied by autoantibodies such as antinuclear antibodies (ANA). ANA are serological hallmarks of several autoimmune disorders including autoimmune liver diseases (AILD). However, the underlying pathogenesis and the role of Treg in AILD remain to be elucidated. The present study therefore aimed to characterize the liver disease in scurfy mice. Methods: Sera from scurfy mice were screened for ANA by indirect immunofluorescence assay (IFA) and tested for a wide range of AILD-associated autoantibodies by enzyme-linked immunosorbent assay, line immunoassay, and addressable laser bead immunoassay. CD4+ T cells of scurfy mice were transferred into T cell-deficient B6/nude mice. Monoclonal autoantibodies from scurfy mice and recipient B6/nude mice were tested for ANA by IFA. Liver tissue of scurfy mice was analyzed by conventional histology. Collagen deposition in scurfy liver was quantified via hepatic hydroxyproline content. Real-time quantitative PCR was used to determine fibrosis-related hepatic gene expression. Hepatic immune cells were differentiated by flow cytometry. Results: All scurfy mice produced ANA. AILD-associated autoantibodies, predominantly antimitochondrial antibodies, were detected at significantly higher levels in scurfy sera. CD4+ T cells from scurfy mice were sufficient to induce anti-dsDNA autoantibodies and ANA with an AILD-related nuclear envelope staining pattern. Liver histology revealed portal inflammation with bile duct damage and proliferation, as in primary biliary cholangitis (PBC), and interface hepatitis with portal-parenchymal necroinflammation, as found in autoimmune hepatitis (AIH). In scurfy liver, TNFα and fibrosis-related transcripts including Col1a1, Timp1, Acta2, Mmp2, and Mmp9 were upregulated. The level of proinflammatory monocytic macrophages (Ly-6Chi) was increased, while M2-type macrophages (CD206+) were downregulated compared to wildtype controls. Despite severe hepatic inflammation, fibrosis did not develop within 25 days, which is close to the lifespan of scurfy mice. Discussion: Our findings suggest that Treg-deficient scurfy mice spontaneously develop clinical, serological, and immunopathological characteristics of AILD with overlapping features of PBC and AIH.


Assuntos
Doenças do Tecido Conjuntivo , Hepatite Autoimune , Hepatopatias , Camundongos , Animais , Linfócitos T Reguladores , Camundongos Nus , Autoanticorpos , Hepatopatias/metabolismo , Fibrose , Doenças do Tecido Conjuntivo/metabolismo , Síndrome , Inflamação/metabolismo
7.
Stem Cell Reports ; 18(8): 1555-1572, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37557073

RESUMO

This review aims to evaluate the current preclinical state of liver bioengineering, the clinical context for liver cell therapies, the cell sources, the delivery routes, and the results of clinical trials for end-stage liver disease. Different clinical settings, such as inborn errors of metabolism, acute liver failure, chronic liver disease, liver cirrhosis, and acute-on-chronic liver failure, as well as multiple cellular sources were analyzed; namely, hepatocytes, hepatic progenitor cells, biliary tree stem/progenitor cells, mesenchymal stromal cells, and macrophages. The highly heterogeneous clinical scenario of liver disease and the availability of multiple cellular sources endowed with different biological properties make this a multidisciplinary translational research challenge. Data on each individual liver disease and more accurate endpoints are urgently needed, together with a characterization of the regenerative pathways leading to potential therapeutic benefit. Here, we critically review these topics and identify related research needs and perspectives in preclinical and clinical settings.


Assuntos
Hepatopatias , Medicina Regenerativa , Humanos , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Hepatopatias/terapia , Hepatopatias/metabolismo , Fígado/metabolismo , Hepatócitos
8.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445994

RESUMO

The enzyme transglutaminase 2 (TG2) plays a key role in celiac disease (CeD) pathogenesis. Active TG2 is located mainly extracellularly in the lamina propria but also in the villous enterocytes of the duodenum. The TG2 inhibitor ZED1227 is a promising drug candidate for treating CeD and is designed to block the TG2-catalyzed deamidation and crosslinking of gliadin peptides. Our aim was to study the accumulation of ZED1227 after oral administration of the drug. We studied duodenal biopsies derived from a phase 2a clinical drug trial using an antibody that detects ZED1227 when bound to the catalytic center of TG2. Human epithelial organoids were studied in vitro for the effect of ZED1227 on the activity of TG2 using the 5-biotin-pentylamine assay. The ZED1227-TG2 complex was found mainly in the villous enterocytes in post-treatment biopsies. The signal of ZED1227-TG2 was strongest in the luminal epithelial brush border, while the intensity of the signal in the lamina propria was only ~20% of that in the villous enterocytes. No signal specific to ZED1227 could be detected in pretreatment biopsies or in biopsies from patients randomized to the placebo treatment arm. ZED1227-TG2 staining co-localized with total TG2 and native and deamidated gliadin peptides on the enterocyte luminal surface. Inhibition of TG2 activity by ZED1227 was demonstrated in epithelial organoids. Our findings suggest that active TG2 is present at the luminal side of the villous epithelium and that inhibition of TG2 activity by ZED1227 occurs already there before gliadin peptides enter the lamina propria.


Assuntos
Doença Celíaca , Glutens , Humanos , Proteína 2 Glutamina gama-Glutamiltransferase , Enterócitos/metabolismo , Gliadina , Transglutaminases/metabolismo , Peptídeos
9.
BMJ Open Gastroenterol ; 10(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433685

RESUMO

OBJECTIVE: Stellate cells are responsible for liver and pancreas fibrosis and strictly correlate with tumourigenesis. Although their activation is reversible, an exacerbated signalling triggers chronic fibrosis. Toll-like receptors (TLRs) modulate stellate cells transition. TLR5 transduces the signal deriving by the binding to bacterial flagellin from invading mobile bacteria. DESIGN: Human hepatic and pancreatic stellate cells were activated by the administration of transforming growth factor-beta (TGF-ß). TLR5 was transiently knocked down by short-interference RNA transfection. Reverse Transcription-quantitativePCR and western blot were performed to analyse the transcript and protein level of TLR5 and the transition players. Fluorescence microscopy was performed to identify these targets in spheroids and in the sections of murine fibrotic liver. RESULTS: TGF-ß-activated human hepatic and pancreatic stellate cells showed an increase of TLR5 expression. TLR5 knockdown blocked the activation of those stellate cells. Furthermore, TLR5 busted during murine liver fibrosis and co-localised with the inducible Collagen I. Flagellin suppressed TLR5, COL1A1 and ACTA2 expression after the administration of TGF-ß. Instead, the antagonist of TLR5 did not block the effect of TGF-ß. Wortmannin, a specific AKT inhibitor, induced TLR5 but not COL1A1 and ACTA2 transcript and protein level. CONCLUSION: TGF-ß-mediated activation of hepatic and pancreatic stellate cells requires the over-expression of TLR5. Instead, its autonomous signalling inhibits the activation of the stellate cells, thus prompting a signalling through different regulatory pathways.


Assuntos
Flagelina , Células Estreladas do Pâncreas , Receptor 5 Toll-Like , Animais , Humanos , Camundongos , Flagelina/farmacologia , Cirrose Hepática , Receptor 5 Toll-Like/metabolismo
10.
Cancers (Basel) ; 15(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37046731

RESUMO

Improved serological biomarkers are needed for the early detection, risk stratification and treatment surveillance of patients with oral squamous cell carcinoma (OSCC). We performed an exploratory study using advanced, highly specific, DNA-aptamer-based serum proteomics (SOMAscan, 1305-plex) to identify distinct proteomic changes in patients with OSCC pre- vs. post-resection and compared to healthy controls. A total of 63 significantly differentially expressed serum proteins (each p < 0.05) were found that could discriminate between OSCC and healthy controls with 100% accuracy. Furthermore, 121 proteins were detected that were significantly altered between pre- and post-resection sera, and 12 OSCC-associated proteins reversed to levels equivalent to healthy controls after resection. Of these, 6 were increased and 6 were decreased relative to healthy controls, highlighting the potential relevance of these proteins as OSCC tumor markers. Pathway analyses revealed potential pathophysiological mechanisms associated with OSCC. Hence, quantitative proteome analysis using SOMAscan technology is promising and may aid in the development of defined serum marker assays to predict tumor occurrence, progression and recurrence in OSCC, and to guide personalized therapies.

11.
Hepatology ; 78(1): 258-271, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36994719

RESUMO

BACKGROUND AND AIMS: Detecting NASH remains challenging, while at-risk NASH (steatohepatitis and F≥ 2) tends to progress and is of interest for drug development and clinical application. We developed prediction models by supervised machine learning techniques, with clinical data and biomarkers to stage and grade patients with NAFLD. APPROACH AND RESULTS: Learning data were collected in the Liver Investigation: Testing Marker Utility in Steatohepatitis metacohort (966 biopsy-proven NAFLD adults), staged and graded according to NASH CRN. Conditions of interest were the clinical trial definition of NASH (NAS ≥ 4;53%), at-risk NASH (NASH with F ≥ 2;35%), significant (F ≥ 2;47%), and advanced fibrosis (F ≥ 3;28%). Thirty-five predictors were included. Missing data were handled by multiple imputations. Data were randomly split into training/validation (75/25) sets. A gradient boosting machine was applied to develop 2 models for each condition: clinical versus extended (clinical and biomarkers). Two variants of the NASH and at-risk NASH models were constructed: direct and composite models.Clinical gradient boosting machine models for steatosis/inflammation/ballooning had AUCs of 0.94/0.79/0.72. There were no improvements when biomarkers were included. The direct NASH model produced AUCs (clinical/extended) of 0.61/0.65. The composite NASH model performed significantly better (0.71) for both variants. The composite at-risk NASH model had an AUC of 0.83 (clinical and extended), an improvement over the direct model. Significant fibrosis models had AUCs (clinical/extended) of 0.76/0.78. The extended advanced fibrosis model (0.86) performed significantly better than the clinical version (0.82). CONCLUSIONS: Detection of NASH and at-risk NASH can be improved by constructing independent machine learning models for each component, using only clinical predictors. Adding biomarkers only improved the accuracy of fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adulto , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Fígado/patologia , Fibrose , Algoritmos , Biomarcadores , Aprendizado de Máquina , Biópsia , Cirrose Hepática/diagnóstico , Cirrose Hepática/patologia
12.
Cell Mol Gastroenterol Hepatol ; 15(4): 841-867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36521660

RESUMO

BACKGROUND & AIMS: Fibroblast activation protein (FAP) is expressed on activated fibroblast. Its role in fibrosis and desmoplasia is controversial, and data on pharmacological FAP inhibition are lacking. We aimed to better define the role of FAP in liver fibrosis in vivo and in vitro. METHODS: FAP expression was analyzed in mice and patients with fibrotic liver diseases of various etiologies. Fibrotic mice received a specific FAP inhibitor (FAPi) at 2 doses orally for 2 weeks during parenchymal fibrosis progression (6 weeks of carbon tetrachloride) and regression (2 weeks off carbon tetrachloride), and with biliary fibrosis (Mdr2-/-). Recombinant FAP was added to (co-)cultures of hepatic stellate cells (HSC), fibroblasts, and macrophages. Fibrosis- and inflammation-related parameters were determined biochemically, by quantitative immunohistochemistry, polymerase chain reaction, and transcriptomics. RESULTS: FAP+ fibroblasts/HSCs were α-smooth muscle actin (α-SMA)-negative and located at interfaces of fibrotic septa next to macrophages in murine and human livers. In parenchymal fibrosis, FAPi reduced collagen area, liver collagen content, α-SMA+ myofibroblasts, M2-type macrophages, serum alanine transaminase and aspartate aminotransferase, key fibrogenesis-related transcripts, and increased hepatocyte proliferation 10-fold. During regression, FAP was suppressed, and FAPi was ineffective. FAPi less potently inhibited biliary fibrosis. In vitro, FAP small interfering RNA reduced HSC α-SMA expression and collagen production, and FAPi suppressed their activation and proliferation. Compared with untreated macrophages, FAPi regulated macrophage profibrogenic activation and transcriptome, and their conditioned medium attenuated HSC activation, which was increased with addition of recombinant FAP. CONCLUSIONS: Pharmacological FAP inhibition attenuates inflammation-predominant liver fibrosis. FAP is expressed on subsets of activated fibroblasts/HSC and promotes both macrophage and HSC profibrogenic activity in liver fibrosis.


Assuntos
Hepatite , Hepatopatias , Humanos , Camundongos , Animais , Tetracloreto de Carbono/toxicidade , Cirrose Hepática/metabolismo , Inflamação , Fibrose , Colágeno/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo
13.
EBioMedicine ; 85: 104296, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206625

RESUMO

BACKGROUND: COVID-19 is characterized by a heterogeneous clinical presentation, ranging from mild symptoms to severe courses of disease. 9-20% of hospitalized patients with severe lung disease die from COVID-19 and a substantial number of survivors develop long-COVID. Our objective was to provide comprehensive insights into the pathophysiology of severe COVID-19 and to identify liquid biomarkers for disease severity and therapy response. METHODS: We studied a total of 85 lungs (n = 31 COVID autopsy samples; n = 7 influenza A autopsy samples; n = 18 interstitial lung disease explants; n = 24 healthy controls) using the highest resolution Synchrotron radiation-based hierarchical phase-contrast tomography, scanning electron microscopy of microvascular corrosion casts, immunohistochemistry, matrix-assisted laser desorption ionization mass spectrometry imaging, and analysis of mRNA expression and biological pathways. Plasma samples from all disease groups were used for liquid biomarker determination using ELISA. The anatomic/molecular data were analyzed as a function of patients' hospitalization time. FINDINGS: The observed patchy/mosaic appearance of COVID-19 in conventional lung imaging resulted from microvascular occlusion and secondary lobular ischemia. The length of hospitalization was associated with increased intussusceptive angiogenesis. This was associated with enhanced angiogenic, and fibrotic gene expression demonstrated by molecular profiling and metabolomic analysis. Increased plasma fibrosis markers correlated with their pulmonary tissue transcript levels and predicted disease severity. Plasma analysis confirmed distinct fibrosis biomarkers (TSP2, GDF15, IGFBP7, Pro-C3) that predicted the fatal trajectory in COVID-19. INTERPRETATION: Pulmonary severe COVID-19 is a consequence of secondary lobular microischemia and fibrotic remodelling, resulting in a distinctive form of fibrotic interstitial lung disease that contributes to long-COVID. FUNDING: This project was made possible by a number of funders. The full list can be found within the Declaration of interests / Acknowledgements section at the end of the manuscript.


Assuntos
COVID-19 , Doenças Pulmonares Intersticiais , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Doenças Pulmonares Intersticiais/patologia , Fibrose , Biomarcadores/análise , Isquemia/patologia , Síndrome de COVID-19 Pós-Aguda
14.
Proc Natl Acad Sci U S A ; 119(12): e2122310119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35290110

RESUMO

Immune-suppressive (M2-type) macrophages can contribute to the progression of cancer and fibrosis. In chronic liver diseases, M2-type macrophages promote the replacement of functional parenchyma by collagen-rich scar tissue. Here, we aim to prevent liver fibrosis progression by repolarizing liver M2-type macrophages toward a nonfibrotic phenotype by applying a pH-degradable, squaric ester­based nanogel carrier system. This nanotechnology platform enables a selective conjugation of the highly water-soluble bisphosphonate alendronate, a macrophage-repolarizing agent that intrinsically targets bone tissue. The covalent delivery system, however, promotes the drug's safe and efficient delivery to nonparenchymal cells of fibrotic livers after intravenous administration. The bisphosphonate payload does not eliminate but instead reprograms profibrotic M2- toward antifibrotic M1-type macrophages in vitro and potently prevents liver fibrosis progression in vivo, mainly via induction of a fibrolytic phenotype, as demonstrated by transcriptomic and proteomic analyses. Therefore, the alendronate-loaded squaric ester­based nanogels represent an attractive approach for nanotherapeutic interventions in fibrosis and other diseases driven by M2-type macrophages, including cancer.


Assuntos
Difosfonatos , Cirrose Hepática , Difosfonatos/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Cirrose Hepática/tratamento farmacológico , Macrófagos , Nanogéis
15.
Macromol Rapid Commun ; 43(12): e2200095, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35339115

RESUMO

Defined conjugation of functional molecules to block copolymer end groups is a powerful strategy to enhance the scope of micellar carriers for drug delivery. In this study, an approach to access well-defined polycarbonate-based block copolymers by labeling their end groups with single fluorescent dye molecules is established. Following controlled polymerization conditions, the block copolymers' primary hydroxy end group can be converted into activated pentafluorophenyl ester carbonates and subsequently aminolyzed with fluorescent dyes that are equipped with primary amines. During a solvent-evaporation process, the resulting end group dye-labeled block copolymers self-assemble into narrowly dispersed ∼25 nm-sized micelles and simultaneously encapsulate hydrophobic (immuno-)drugs. The covalently attached fluorescent tracer can be used to monitor both uptake into cells and stability under biologically relevant conditions, including incubation with blood plasma or during blood circulation in zebrafish embryos. By encapsulation of the toll-like receptor 7/8 (TLR7/8) agonist CL075, immune stimulatory polymeric micelles are generated that get internalized by various antigen-presenting dendritic cells and promote their maturation. Generally, such end group dye-labeled polycarbonate block copolymers display ideal features to permit targeted delivery of hydrophobic drugs to key immune cells for vaccination and cancer immunotherapy.


Assuntos
Micelas , Peixe-Zebra , Animais , Carbonatos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Corantes Fluorescentes , Cimento de Policarboxilato , Polietilenoglicóis/química , Polímeros/química
16.
Cell Physiol Biochem ; 56(1): 28-38, 2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35060690

RESUMO

BACKGROUND/AIMS: Osteoprotegerin (OPG) is a profibrotic mediator produced by myofibro-blasts under influence of transforming growth factor ß (TGFß). Its expression in experimental models of liver fibrosis correlates well with disease severity and treatment responses. The regulation of OPG in liver tissue is largely unknown and we therefore set out to elucidate which growth factors/interleukins associated with fibrosis induce OPG and through which pathways. METHODS: Precision-cut liver slices of wild type and STAT6-deficient mice and 3T3 fibroblasts were used to investigate the effects of TGFß, interleukin (IL) 13 (IL13), IL1ß, and platelet-derived growth factor BB (PDGF-BB) on expression of OPG. OPG protein was measure by ELISA, whereas OPG mRNA and expression of other relevant genes was measured by qPCR. RESULTS: In addition to TGFß, only IL13 and not PDGF-BB or IL1ß could induce OPG expression in 3T3 fibroblasts and liver slices. This IL13-dependent induction was not shown in liver slices of STAT6-deficient mice and when wild type slices were cotreated with TGFß receptor 1 kinase inhibitor galunisertib, STAT6 inhibitor AS1517499, or AP1 inhibitor T5224. This suggests that the OPG-inducing effect of IL13 is mediated through IL13 receptor α1-activation and subsequent STAT6-dependent upregulation of IL13 receptor α2, which in turn activates AP1 and induces production of TGFß and subsequent production of OPG. CONCLUSION: We have shown that IL13 induces OPG release by liver tissue through a TGFß-dependent pathway involving both the α1 and the α2 receptor of IL13 and transcription factors STAT6 and AP1. OPG may therefore be a novel target for the treatment liver fibrosis as it is mechanistically linked to two important regulators of fibrosis in liver, namely IL13 and TGFß1.


Assuntos
Regulação da Expressão Gênica , Interleucina-13/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Osteoprotegerina/biossíntese , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Feminino , Masculino , Camundongos
17.
J Clin Endocrinol Metab ; 107(4): e1356-e1366, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-34905051

RESUMO

CONTEXT: Serum propeptides of type III and type VI collagen (PRO-C3 and PRO-C6) are elevated in advanced nonalcoholic fatty liver disease (NAFLD), but their value in patients with severe obesity and their evolution after bariatric surgery (BS) is unknown. It is unclear if these markers of fibrogenesis are affected by adipose tissue fibrosis (ATF). OBJECTIVE: We studied the association of PRO-C3 and PRO-C6 with liver fibrosis before BS, examined their evolution after BS, and evaluated how much patients' ATF contribute to their levels. METHODS: Serum PRO-C3 and PRO-C6 were measured in 158 BS patients and compared with liver, subcutaneous, and omental adipose tissue histology obtained during surgery. PRO-C3 and PRO-C6 levels of 63 patients were determined in follow-up at 3 and 12 months post-BS. RESULTS: Patients in the highest quartile of PRO-C3 had a higher risk of advanced liver fibrosis (stage F3-4; odds ratio 5.8; 95% CI [1.5-29.9]; P = 0.017) vs the lowest quartile (adjustment for age, gender, and BMI). PRO-C3 was positively correlated with markers of insulin resistance and liver enzymes. After BS, PRO-C3 levels decreased in patients with high baseline liver fibrosis. This decrease correlated with improvement of metabolic and liver parameters. PRO-C6 was not related to stage of liver fibrosis. ATF did not correlate with PRO-C3 or PRO-C6 levels at baseline or after BS. CONCLUSION: PRO-C3 was associated with advanced liver fibrosis in patients with severe obesity, and decreased after BS, without being affected by ATF. These data suggest that BS prominently eliminates drivers of hepatic fibrogenesis in NAFLD.


Assuntos
Cirurgia Bariátrica , Hepatopatia Gordurosa não Alcoólica , Obesidade Mórbida , Biomarcadores , Complemento C3/análise , Fibrose , Humanos , Fígado/metabolismo , Cirrose Hepática/etiologia , Cirrose Hepática/cirurgia , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/cirurgia , Obesidade Mórbida/metabolismo
18.
J Hepatol ; 76(4): 800-811, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34915054

RESUMO

BACKGROUND & AIMS: Although long-chain omega-3 fatty acids (LCn-3FAs) regulate inflammatory pathways of relevance to non-alcoholic steatohepatitis (NASH), their susceptibility to peroxidation may limit their therapeutic potential. We compared the metabolism of eicosapentaenoic acid (EPA) with an engineered EPA derivative (icosabutate) in human hepatocytes in vitro and their effects on hepatic glutathione metabolism, oxidised lipids, inflammation, and fibrosis in a dietary mouse model of NASH, and in patients prone to fatty liver disease. METHODS: Oxidation rates and cellular partitioning of EPA and icosabutate were compared in primary human hepatocytes. Comparative effects of delayed treatment with either low- (56 mg/kg) or high-dose (112 mg/kg) icosabutate were compared with EPA (91 mg/kg) or a glucagon-like peptide 1 receptor agonist in a choline-deficient (CD), L-amino acid-defined NASH mouse model. To assess the translational potential of these findings, effects on elevated liver enzymes and fibrosis-4 (FIB-4) score were assessed in overweight, hyperlipidaemic patients at an increased risk of NASH. RESULTS: In contrast to EPA, icosabutate resisted oxidation and incorporation into hepatocytes. Icosabutate also reduced inflammation and fibrosis in conjunction with a reversal of CD diet-induced changes in the hepatic lipidome. EPA had minimal effect on any parameter and even worsened fibrosis in association with depletion of hepatic glutathione. In dyslipidaemic patients at risk of NASH, icosabutate rapidly normalised elevated plasma ALT, GGT and AST and reduced FIB-4 in patients with elevated ALT and/or AST. CONCLUSION: Icosabutate does not accumulate in hepatocytes and confers beneficial effects on hepatic oxidative stress, inflammation and fibrosis in mice. In conjunction with reductions in markers of liver injury in hyperlipidaemic patients, these findings suggest that structural engineering of LCn-3FAs offers a novel approach for the treatment of NASH. LAY SUMMARY: Long-chain omega-3 fatty acids are involved in multiple pathways regulating hepatic inflammation and fibrosis, but their susceptibility to peroxidation and use as an energy source may limit their clinical efficacy. Herein, we show that a structurally modified omega-3 fatty acid, icosabutate, overcame these challenges and had markedly improved antifibrotic efficacy in a mouse model of non-alcoholic steatohepatitis. A hepatoprotective effect of icosabutate was also observed in patients with elevated circulating lipids, in whom it led to rapid reductions in markers of liver injury.


Assuntos
Ácidos Graxos Ômega-3 , Hepatite , Hepatopatia Gordurosa não Alcoólica , Animais , Biomarcadores/metabolismo , Butiratos , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Fibrose , Glutationa/metabolismo , Hepatite/patologia , Humanos , Inflamação/metabolismo , Fígado/patologia , Cirrose Hepática/complicações , Cirrose Hepática/etiologia , Camundongos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/etiologia
20.
Cells ; 12(1)2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36611868

RESUMO

The single nucleotide polymorphism I148M of the lipase patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an unfavorable prognosis in alcoholic and non-alcoholic steatohepatitis (ASH, NASH), with progression to liver cirrhosis and development of hepatocellular carcinoma. In this study, we investigated the mechanistic interaction of PNPLA3 with lipid droplet (LD)-associated proteins of the perilipin family, which serve as gatekeepers for LD degradation. In a collective of 106 NASH, ASH and control liver samples, immunohistochemical analyses revealed increased ballooning, inflammation and fibrosis, as well as an accumulation of PNPLA3-perilipin 5 complexes on larger LDs in patients homo- and heterozygous for PNPLA3(I148M). Co-immunoprecipitation demonstrated an interaction of PNPLA3 with perilipin 5 and the key enzyme of lipolysis, adipose triglyceride lipase (ATGL). Localization studies in cell cultures and human liver showed colocalization of perilipin 5, ATGL and PNPLA3. Moreover, the lipolytic activity of ATGL was negatively regulated by PNPLA3 and perilipin 5, whereas perilipin 1 displaced PNPLA3 from the ATGL complex. Furthermore, ballooned hepatocytes, the hallmark of steatohepatitis, were positive for PNPLA3 and perilipins 2 and 5, but showed decreased perilipin 1 expression with respect to neighboured hepatocytes. In summary, PNPLA3- and ATGL-driven lipolysis is significantly regulated by perilipin 1 and 5 in steatohepatitis.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Lipólise , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Perilipina-1 , Perilipina-5
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA