Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Acta Derm Venereol ; 103: adv5755, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37428027

RESUMO

Calciphylaxis is a rare, yet underdiagnosed condition causing high mortality in patients with severe renal and cardiovascular disease. Since knowledge of the pathophysiology of calciphylaxis is limited, a differential analysis of histological alterations in patient subgroups with various comorbidities might expose different disease phenotypes and allow deeper insights into the pathophysiology of the condition. Histological markers of osteogenesis and calcification were investigated in a group of 18 patients with clinically and histologically verified calciphylaxis, using immunohistochemical staining. Analysis of staining intensity and distribution of marker proteins in histological structures was performed to evaluate distinct patterns between subgroups with different clinical comorbidities in comparison with a control group. In all cases, immunohistochemical staining for bone matrix proteins, bone-morphogenic proteins and matrix-Gla proteins co-localized with subcutaneous vascular and interstitial calcifications. Significant expression of bone-morphogenic protein-7 and active matrix-Gla protein was observed. Mortality was associated with renal comorbidities and increased expression of bone-morphogenic protein-7. However, no distinct histological patterns were found between subgroups with renal disease, warfarin intake or coexisting micro- and macro-angiopathies. The upregulation of osteogenic markers (including bone-morphogenic protein-7) plays a major role in the development of calciphylaxis. Clinical outcome correlates with kidney function and phosphate handling, suggesting different pathophysiological mechanisms. However, biopsy  at late-stage disease shows a common histological phenotype, involving enchondral ossification.


Assuntos
Calciofilaxia , Falência Renal Crônica , Humanos , Calciofilaxia/diagnóstico , Calciofilaxia/etiologia , Calciofilaxia/patologia , Tela Subcutânea/patologia , Osteogênese , Gordura Subcutânea/patologia , Biópsia/efeitos adversos
2.
Vascul Pharmacol ; 150: 107167, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36958707

RESUMO

BACKGROUND: Calcification, a key feature of advanced human atherosclerosis, is positively associated with vascular disease burden and adverse events. We showed that macrocalcification can be a stabilizing factor for carotid plaque molecular biology, due to inverse association with immune processes. Mast cells (MCs) are important contributors to plaque instability, but their relationship with macrocalcification is unexplored. With a hypothesis that MC activation negatively associates with carotid plaque macrocalcification, we aimed to investigate the link between MCs and carotid plaque vulnerability, and study MC role in plaque calcification via smooth muscle cells (SMCs). METHODS: Pre-operative computed tomography angiographies of patients (n = 40) undergoing surgery for carotid stenosis were used to characterize plaque morphology. Plaque microarrays (n = 40 and n = 126) were used for bioinformatic deconvolution of immune cell populations. Tissue microarrays (n = 103) were used to histologically validate the contribution of activated and resting MCs in plaques. RESULTS: Activated MCs and their typical markers were negatively correlated with macrocalcification. The ratio of activated vs. resting MCs was increased in low-calcified plaques from symptomatic patients. There was no modulating effect of medication on MC ratios. In vitro experiments showed that SMC calcification attenuated MC activation, while both active and resting MCs stimulated SMC calcification and induced dedifferentiation towards a pro-inflammatory-, osteochondrocyte-like phenotype, without modulating their migro-proliferative function. CONCLUSIONS: Integrative analyses from human plaques showed that MC activation is inversely associated with macrocalcification and positively with parameters of plaque vulnerability. Mechanistically, MCs induce SMC osteogenic reprograming, while matrix calcification in turn attenuates MC activation, offering new therapeutic avenues for exploration.


Assuntos
Aterosclerose , Estenose das Carótidas , Placa Aterosclerótica , Calcificação Vascular , Humanos , Placa Aterosclerótica/patologia , Mastócitos/patologia , Estenose das Carótidas/complicações , Aterosclerose/patologia , Miócitos de Músculo Liso/patologia , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/genética
3.
Theranostics ; 13(2): 659-672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36632229

RESUMO

Rationale: Calcium plays an essential role in the biology of vertebrates. Calcium content in body fluids is maintained within a narrow physiologic range by feedback control. Phosphate is equally important for metabolism and is likewise controlled, albeit over a wider range. This results in a nearly supersaturated state of calcium phosphate in body liquids driving mineral precipitation in soft tissues, which is actively prevented by calcification inhibitors. The hepatic plasma protein fetuin-A is a circulating mineralization inhibitor regulating calcium phosphate crystal growth and calcified matrix metabolism. Ectopic mineralization is associated with many pathological conditions aggravating their outcome. Current diagnostic methods lack sensitivity towards microcalcifications representing the initial stages of the process. Given the irreversibility of established calcifications, novel diagnostic tools capable of detecting nascent calcium phosphate deposits are highly desirable. Methods: We designed fluorescent fusion proteins consisting of fetuin-A coupled to a green or red fluorescent protein derivate, mEmerald or mRuby3, respectively. The proteins were expressed in mammalian cell lines. Sequence optimization resolved folding issues and increased sensitivity of mineral binding. Chimeric proteins were tested for their ability to detect calcifications in cell cultures and tissue sections retrieved from calcification-prone mice. Results: We employed novel genetically labeled fetuin-A-based fluorescent proteins for the detection of ectopic calcifications. We show that fetuin-A-based imaging agents are non-toxic and suitable for live imaging of microcalcifications beyond the detection limit of conventional staining techniques. The ability of fetuin-A to preferentially bind nascent calcium phosphate crystals allowed the resolution of histopathological detail of early kidney damage that went previously undetected. Endogenous expression of fetuin-A fluorescent fusion proteins allowed extended live imaging of calcifying cells with unprecedented sensitivity and specificity. Conclusion: Ectopic microcalcifications represent a major clinical concern lacking effective diagnostic and treatment options. In this paper, we describe novel highly sensitive fetuin-A-based fluorescent probes for imaging microcalcifications. We show that fusion proteins consisting of a fetuin-A mineral binding moiety and a fluorescent protein are superior to the routine methods for detecting calcifications. They also surpass in continuous live cell imaging the chemically fluorescence labeled fetuin-A, which we established previously.


Assuntos
Calcinose , Cálcio , alfa-2-Glicoproteína-HS , Animais , Camundongos , alfa-2-Glicoproteína-HS/metabolismo , Calcinose/diagnóstico por imagem , Cálcio/metabolismo , Fosfatos de Cálcio/metabolismo , Ligação Proteica
4.
Adv Sci (Weinh) ; 10(5): e2203053, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36526599

RESUMO

Acute myocardial infarction (AMI) is accompanied by a systemic trauma response that impacts the whole body, including blood. This study addresses whether macrophages, key players in trauma repair, sense and respond to these changes. For this, healthy human monocyte-derived macrophages are exposed to 20% human AMI (n = 50) or control (n = 20) serum and analyzed by transcriptional and multiparameter functional screening followed by network-guided data interpretation and drug repurposing. Results are validated in an independent cohort at functional level (n = 47 AMI, n = 25 control) and in a public dataset. AMI serum exposure results in an overt AMI signature, enriched in debris cleaning, mitosis, and immune pathways. Moreover, gene networks associated with AMI and with poor clinical prognosis in AMI are identified. Network-guided drug screening on the latter unveils prostaglandin E2 (PGE2) signaling as target for clinical intervention in detrimental macrophage imprinting during AMI trauma healing. The results demonstrate pronounced context-induced macrophage reprogramming by the AMI systemic environment, to a degree decisive for patient prognosis. This offers new opportunities for targeted intervention and optimized cardiovascular disease risk management.


Assuntos
Macrófagos , Infarto do Miocárdio , Humanos , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Prognóstico , Redes Reguladoras de Genes
5.
Mol Aspects Med ; 86: 101099, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35689974

RESUMO

Post-translational modifications (PTMs) have been proposed as a link between the oxidative stress-inflammation-ageing trinity, thereby affecting several hallmarks of ageing. Phosphorylation, acetylation, and ubiquitination cover >90% of all the reported PTMs. Several of the main PTMs are involved in normal "healthy" ageing and in different age-related diseases, for instance neurodegenerative, metabolic, cardiovascular, and bone diseases, as well as cancer and chronic kidney disease. Ultimately, data from human rare progeroid syndromes, but also from long-living animal species, imply that PTMs are critical regulators of the ageing process. Mechanistically, PTMs target epigenetic and non-epigenetic pathways during ageing. In particular, epigenetic histone modification has critical implications for the ageing process and can modulate lifespan. Therefore, PTM-based therapeutics appear to be attractive pharmaceutical candidates to reduce the burden of ageing-related diseases. Several phosphorylation and acetylation inhibitors have already been FDA-approved for the treatment of other diseases and offer a unique potential to investigate both beneficial effects and possible side-effects. As an example, the most well-studied senolytic compounds dasatinib and quercetin, which have already been tested in Phase 1 pilot studies, also act as kinase inhibitors, targeting cellular senescence and increasing lifespan. Future studies need to carefully determine the best PTM-based candidates for the treatment of the "diseasome of ageing".


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Acetilação , Envelhecimento , Animais , Histonas/metabolismo , Humanos , Estresse Oxidativo , Fosforilação
6.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563203

RESUMO

Chronic inflammation is a major driver of chronic inflammatory diseases (CIDs), with a tremendous impact worldwide. Besides its function as a pathological calcification inhibitor, vitamin K-dependent protein Gla-rich protein (GRP) was shown to act as an anti-inflammatory agent independently of its gamma-carboxylation status. Although GRP's therapeutic potential has been highlighted, its low solubility at physiological pH still constitutes a major challenge for its biomedical application. In this work, we produced fluorescein-labeled chitosan-tripolyphosphate nanoparticles containing non-carboxylated GRP (ucGRP) (FCNG) via ionotropic gelation, increasing its bioavailability, stability, and anti-inflammatory potential. The results indicate the nanosized nature of FCNG with PDI and a zeta potential suitable for biomedical applications. FCNG's anti-inflammatory activity was studied in macrophage-differentiated THP1 cells, and in primary vascular smooth muscle cells and chondrocytes, inflamed with LPS, TNFα and IL-1ß, respectively. In all these in vitro human cell systems, FCNG treatments resulted in increased intra and extracellular GRP levels, and decreased pro-inflammatory responses of target cells, by decreasing pro-inflammatory cytokines and inflammation mediators. These results suggest the retained anti-inflammatory bioactivity of ucGRP in FCNG, strengthening the potential use of ucGRP as an anti-inflammatory agent with a wide spectrum of application, and opening up perspectives for its therapeutic application in CIDs.


Assuntos
Calcinose , Calcinose/patologia , Condrócitos/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Vitamina K/metabolismo
7.
Trends Endocrinol Metab ; 33(6): 409-423, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35370062

RESUMO

Lipids and lipoproteins, their metabolism, and their transport are essential contributing factors of cardiovascular disease (CVD) as they regulate plasma cholesterol concentration, enhancing cholesterol uptake by macrophages, leading to foam cell formation and ultimately resulting in plaque formation and inflammation. However, lipids and lipoproteins have cardioprotective functions as well, such as preventing oxidation of proatherogenic molecules and downregulating inflammatory proteins.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Células Espumosas/metabolismo , Humanos , Lipoproteínas/metabolismo , Macrófagos/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054772

RESUMO

Platelet factor 4 (CXCL4) is a chemokine abundantly stored in platelets. Upon injury and during atherosclerosis, CXCL4 is transported through the vessel wall where it modulates the function of vascular smooth muscle cells (VSMCs) by affecting proliferation, migration, gene expression and cytokine release. Variant CXCL4L1 is distinct from CXCL4 in function and expression pattern, despite a minor three-amino acid difference. Here, the effects of CXCL4 and CXCL4L1 on the phenotype and function of human VSMCs were compared in vitro. VSMCs were found to constitutively express CXCL4L1 and only exogenously added CXCL4 was internalized by VSMCs. Pre-treatment with heparin completely blocked CXCL4 uptake. A role of the putative CXCL4 receptors CXCR3 and DARC in endocytosis was excluded, but LDL receptor family members appeared to be involved in the uptake of CXCL4. Incubation of VSMCs with both CXCL4 and CXCL4L1 resulted in decreased expression of contractile marker genes and increased mRNA levels of KLF4 and NLRP3 transcription factors, yet only CXCL4 stimulated proliferation and calcification of VSMCs. In conclusion, CXCL4 and CXCL4L1 both modulate gene expression, yet only CXCL4 increases the division rate and formation of calcium-phosphate crystals in VSMCs. CXCL4 and CXCL4L1 may play distinct roles during vascular remodeling in which CXCL4 induces proliferation and calcification while endogenously expressed CXCL4L1 governs cellular homeostasis. The latter notion remains a subject for future investigation.


Assuntos
Calcinose , Proliferação de Células , Contração Muscular , Músculo Liso Vascular/metabolismo , Fator Plaquetário 4/fisiologia , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Fator 4 Semelhante a Kruppel/genética , Músculo Liso Vascular/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fator Plaquetário 4/metabolismo
9.
Mol Aspects Med ; 86: 101066, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35033366

RESUMO

Post-translational modifications (PTMs) generate marginally modified isoforms of native peptides, proteins and lipoproteins thereby regulating protein functions, molecular interactions, and localization. With a key role in functional proteomics, post-translational modifications are recently also associated with the onsets and progressions of various diseases, such as cancer, cardiovascular, renal, and metabolic diseases. With the impact of post-translational modifications becoming increasingly clear, its reliable detection and quantification remain a major obstacle in the translation of these novel pathological markers into clinical diagnosis. While current antibody-based clinical diagnostics struggle to detect and quantify these marginal protein and lipoprotein alterations, state-of-the-art mass spectrometric, proteomic approaches provide the mass accuracy and resolving power necessary to isolate, identify and quantify novel and pathological post-translational modifications; however clinical translation of mass spectrometric applications are still facing major challenges. Here we review the status quo of the clinical translation of mass-spectrometric applications as novel diagnostic tools for the identification and quantification of post-translational modifications and focus on the emerging role of mass spectrometric methods in the clinical assessment of PTMs in disease states.


Assuntos
Processamento de Proteína Pós-Traducional , Proteômica , Humanos , Espectrometria de Massas/métodos , Peptídeos/metabolismo , Proteínas/metabolismo , Proteômica/métodos
10.
Cardiovasc Res ; 118(5): 1232-1246, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33913468

RESUMO

AIMS: Atherosclerotic plaque hypoxia is detrimental for macrophage function. Prolyl hydroxylases (PHDs) initiate cellular hypoxic responses, possibly influencing macrophage function in plaque hypoxia. Thus, we aimed to elucidate the role of myeloid PHDs in atherosclerosis. METHODS AND RESULTS: Myeloid-specific PHD knockout (PHDko) mice were obtained via bone marrow transplantation (PHD1ko, PHD3ko) or conditional knockdown through lysozyme M-driven Cre recombinase (PHD2cko). Mice were fed high cholesterol diet for 6-12 weeks to induce atherosclerosis. Aortic root plaque size was significantly augmented 2.6-fold in PHD2cko, and 1.4-fold in PHD3ko compared to controls but was unchanged in PHD1ko mice. Macrophage apoptosis was promoted in PHD2cko and PHD3ko mice in vitro and in vivo, via the hypoxia-inducible factor (HIF) 1α/BNIP3 axis. Bulk and single-cell RNA data of PHD2cko bone marrow-derived macrophages (BMDMs) and plaque macrophages, respectively, showed enhanced HIF1α/BNIP3 signalling, which was validated in vitro by siRNA silencing. Human plaque BNIP3 mRNA was positively associated with plaque necrotic core size, suggesting similar pro-apoptotic effects in human. Furthermore, PHD2cko plaques displayed enhanced fibrosis, while macrophage collagen breakdown by matrix metalloproteinases, collagen production, and proliferation were unaltered. Instead, PHD2cko BMDMs enhanced fibroblast collagen secretion in a paracrine manner. In silico analysis of macrophage-fibroblast communication predicted SPP1 (osteopontin) signalling as regulator, which was corroborated by enhanced plaque SPP1 protein in vivo. Increased SPP1 mRNA expression upon PHD2cko was preferentially observed in foamy plaque macrophages expressing 'triggering receptor expressed on myeloid cells-2' (TREM2hi) evidenced by single-cell RNA, but not in neutrophils. This confirmed enhanced fibrotic signalling by PHD2cko macrophages to fibroblasts, in vitro as well as in vivo. CONCLUSION: Myeloid PHD2cko and PHD3ko enhanced atherosclerotic plaque growth and macrophage apoptosis, while PHD2cko macrophages further activated collagen secretion by fibroblasts in vitro, likely via paracrine SPP1 signalling through TREM2hi macrophages.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Apoptose , Aterosclerose/metabolismo , Colágeno/metabolismo , Fibrose , Hipóxia/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismo
11.
Cardiovasc Res ; 118(9): 2196-2210, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34273166

RESUMO

AIMS: Smokers are at increased risk of cardiovascular events. However, the exact mechanisms through which smoking influences cardiovascular disease resulting in accelerated atherosclerosis and vascular calcification are unknown. The aim of this study was to investigate effects of nicotine on initiation of vascular smooth muscle cell (VSMC) calcification and to elucidate underlying mechanisms. METHODS AND RESULTS: We assessed vascular calcification of 62 carotid lesions of both smoking and non-smoking patients using ex vivo micro-computed tomography (µCT) scanning. Calcification was present more often in carotid plaques of smokers (n = 22 of 30, 73.3%) compared to non-smokers (n = 11 of 32, 34.3%; P < 0.001), confirming higher atherosclerotic burden. The difference was particularly profound for microcalcifications, which was 17-fold higher in smokers compared to non-smokers. In vitro, nicotine-induced human primary VSMC calcification, and increased osteogenic gene expression (Runx2, Osx, BSP, and OPN) and extracellular vesicle (EV) secretion. The pro-calcifying effects of nicotine were mediated by Ca2+-dependent Nox5. SiRNA knock-down of Nox5 inhibited nicotine-induced EV release and calcification. Moreover, pre-treatment of hVSMCs with vitamin K2 ameliorated nicotine-induced intracellular oxidative stress, EV secretion, and calcification. Using nicotinic acetylcholine receptor (nAChR) blockers α-bungarotoxin and hexamethonium bromide, we found that the effects of nicotine on intracellular Ca2+ and oxidative stress were mediated by α7 and α3 nAChR. Finally, we showed that Nox5 expression was higher in carotid arteries of smokers and correlated with calcification levels in these vessels. CONCLUSION: In this study, we provide evidence that nicotine induces Nox5-mediated pro-calcific processes as novel mechanism of increased atherosclerotic calcification. We identified that activation of α7 and α3 nAChR by nicotine increases intracellular Ca2+ and initiates calcification of hVSMCs through increased Nox5 activity, leading to oxidative stress-mediated EV release. Identifying the role of Nox5-induced oxidative stress opens novel avenues for diagnosis and treatment of smoking-induced cardiovascular disease.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Vesículas Extracelulares , Músculo Liso Vascular , Nicotina , Calcificação Vascular , Aterosclerose/metabolismo , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , Humanos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 5/metabolismo , NADPH Oxidase 5/farmacologia , Nicotina/efeitos adversos , Nicotina/metabolismo , Estresse Oxidativo , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/genética , Calcificação Vascular/metabolismo , Microtomografia por Raio-X
12.
Nutrients ; 13(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34578950

RESUMO

High circulating dephosphorylated (dp) uncarboxylated (uc) matrix Gla protein (MGP) and uc osteocalcin (OC) concentrations are regarded as markers of vitamin K-deficiency. However, because MGP and OC are small molecules, they may potentially pass the glomerulus, and their blood concentrations may strongly depend on kidney function. However, many studies with vitamin K-status parameters do not structurally adjust for baseline kidney function, and detailed studies on kidney function-dependence of vitamin K-status markers are lacking. We therefore measured plasma dp-ucMGP using a chemiluminescent assay in 578 kidney transplant recipients (41% females, age 56 ± 13y, 7.5 (3.2 to 13.7)y after transplantation, eGFR 49 ± 17 mL/min/1.73 m2) participating in the prospective TransplantLines Cohort Studies. Additionally, dp-carboxylated MGP, ucOC and carboxylated OC were measured using ELISA in plasma of a subgroup of 60 participants. Finally, dp-ucMGP was measured in a separate cohort of 124 kidney transplant recipients before and three months after kidney transplantation. Dp-ucMGP positively correlated with creatinine, cystatin C, and negatively with eGFR (Spearman's ρ 0.54, 0.60, and -0.54, respectively, p < 0.001 for all), and each 10 mL/min/1.73 m2 increase in eGFR was associated with a 14.0% lower dp-ucMGP. Additionally, dp-ucMGP strongly declined after kidney transplantation (pretransplantation: 1252 (868 to 1744) pmol/L to posttransplantation: 609 (451 to 914) pmol/L, p < 0.001). Proportions of dp-ucMGP over total MGP and ucOC over total OC were not associated with eGFR. This study highlights that dp-ucMGP is strongly associated with kidney function, and that levels strongly decrease after kidney transplantation. We therefore propose adequate adjustment for kidney function, or the use of kidney function-independent parameters such as proportion of uncarboxylated MGP or OC in the assessment of vitamin K-status in clinical practice and research.


Assuntos
Transplante de Rim , Rim/fisiopatologia , Complicações Pós-Operatórias/sangue , Deficiência de Vitamina K/sangue , Vitamina K/sangue , Bancos de Espécimes Biológicos , Biomarcadores/sangue , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Medições Luminescentes , Masculino , Pessoa de Meia-Idade , Países Baixos , Complicações Pós-Operatórias/fisiopatologia , Estudos Prospectivos , Deficiência de Vitamina K/fisiopatologia
13.
Biomedicines ; 9(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34207976

RESUMO

Local biaxial deformation measurements are essential for the in-depth investigation of tissue properties and remodeling of the ascending thoracic aorta, particularly in aneurysm formation. Current clinical imaging modalities pose limitations around the resolution and tracking of anatomical markers. We evaluated a new intra-operative video-based method to assess local biaxial strains of the ascending thoracic aorta. In 30 patients undergoing open-chest surgery, we obtained repeated biaxial strain measurements, at low- and high-pressure conditions. Precision was very acceptable, with coefficients of variation for biaxial strains remaining below 20%. With our four-marker arrangement, we were able to detect significant local differences in the longitudinal strain as well as in circumferential strain. Overall, the magnitude of strains we obtained (range: 0.02-0.05) was in line with previous reports using other modalities. The proposed method enables the assessment of local aortic biaxial strains and may enable new, clinically informed mechanistic studies using biomechanical modeling as well as mechanobiological profiling.

14.
Cells ; 10(6)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063989

RESUMO

Calcification is a prominent feature of late-stage atherosclerosis, but the mechanisms driving this process are unclear. Using a biobank of carotid endarterectomies, we recently showed that Proteoglycan 4 (PRG4) is a key molecular signature of calcified plaques, expressed in smooth muscle cell (SMC) rich regions. Here, we aimed to unravel the PRG4 role in vascular remodeling and intimal calcification. PRG4 expression in human carotid endarterectomies correlated with calcification assessed by preoperative computed tomographies. PRG4 localized to SMCs in early intimal thickening, while in advanced lesions it was found in the extracellular matrix, surrounding macro-calcifications. In experimental models, Prg4 was upregulated in SMCs from partially ligated ApoE-/- mice and rat carotid intimal hyperplasia, correlating with osteogenic markers and TGFb1. Furthermore, PRG4 was enriched in cells positive for chondrogenic marker SOX9 and around plaque calcifications in ApoE-/- mice on warfarin. In vitro, PRG4 was induced in SMCs by IFNg, TGFb1 and calcifying medium, while SMC markers were repressed under calcifying conditions. Silencing experiments showed that PRG4 expression was driven by transcription factors SMAD3 and SOX9. Functionally, the addition of recombinant human PRG4 increased ectopic SMC calcification, while arresting cell migration and proliferation. Mechanistically, it suppressed endogenous PRG4, SMAD3 and SOX9, and restored SMC markers' expression. PRG4 modulates SMC function and osteogenic phenotype during intimal remodeling and macro-calcification in response to TGFb1 signaling, SMAD3 and SOX9 activation. The effects of PRG4 on SMC phenotype and calcification suggest its role in atherosclerotic plaque stability, warranting further investigations.


Assuntos
Calcinose , Miócitos de Músculo Liso , Proteoglicanas/metabolismo , Remodelação Vascular , Animais , Diferenciação Celular , Estudos de Coortes , Humanos , Masculino , Camundongos , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos , Fatores de Transcrição SOX9/metabolismo , Proteína Smad3/metabolismo
15.
Nutrients ; 13(3)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808652

RESUMO

INTRICATE is a prospective double-blind placebo-controlled feasibility study, assessing the influence of combined vitamin K2 and vitamin D3 supplementation on micro-calcification in carotid artery disease as imaged by hybrid Sodium [18F]Fluoride (Na[18F]F) positron emission tomography (PET)/ magnetic resonance imaging (MRI). Arterial calcification is an actively regulated process and results from the imbalance between calcification promoting and inhibiting factors. Considering the recent advancements in medical imaging, ultrasound (US), PET/MRI, and computed tomography (CT) can be used for the selection and stratification of patients with atherosclerosis. Fifty-two subjects with asymptomatic carotid artery disease on at least one side of the neck will be included in the study. At baseline, an Na[18F]F PET/MRI and CT examination will be performed. Afterwards, subjects will be randomized (1:1) to a vitamin K (400 µg MK-7/day) and vitamin D3 (80 µg/day) or to placebo. At the 3-month follow-up, subjects will undergo a second Na[18F]F PET/MRI and CT scan. The primary endpoint is the change in Na[18F]F PET/MRI (baseline vs. after 3 months) in the treatment group as compared to the placebo arm. Secondary endpoints are changes in plaque composition and in blood-biomarkers. The INTRICATE trial bears the potential to open novel avenues for future large scale randomized controlled trials to intervene in the plaque development and micro-calcification progression.


Assuntos
Doenças das Artérias Carótidas/diagnóstico por imagem , Colecalciferol/farmacologia , Suplementos Nutricionais , Tomografia por Emissão de Pósitrons/métodos , Vitamina K 2/farmacologia , Aterosclerose/tratamento farmacológico , Calcinose/diagnóstico por imagem , Calcinose/tratamento farmacológico , Doenças das Artérias Carótidas/diagnóstico , Método Duplo-Cego , Fluoretos , Estudos Prospectivos , Fluoreto de Sódio , Tomografia Computadorizada por Raios X , Vitamina K 2/uso terapêutico
16.
Nephrol Dial Transplant ; 36(12): 2290-2299, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33313895

RESUMO

BACKGROUND: Circulating desphospho-uncarboxylated matrix γ-carboxyglutamate (Gla) protein (dp-ucMGP), a marker of vitamin K status, is associated with renal function and may serve as a potentially modifiable risk factor for incident chronic kidney disease (CKD). We aimed to assess the association between circulating dp-ucMGP and incident CKD. METHODS: We included 3969 participants with a mean age of 52.3 ± 11.6 years, of whom 48.0% were male, enrolled in the general population-based Prevention of REnal and Vascular ENd-stage Disease study. Study outcomes were incident CKD, defined as either development of an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 or microalbuminuria. Associations of dp-ucMGP with these outcomes were quantified using Cox proportional hazards models and were adjusted for potential confounders. RESULTS: Median plasma dp-ucMGP was 363 [interquartile range (IQR) 219-532] pmol/L and mean serum creatinine- and serum cystatin C-based eGFR (eGFRSCr-SCys) was 95.4 ± 21.8 mL/min/1.73 m2. During 7.1 years of follow-up, 205 (5.4%) participants developed incident CKD and 303 (8.4%) developed microalbuminuria. For every doubling of plasma dp-ucMGP, hazard ratios for the development of incident CKD and microalbuminuria were 1.85 [95% confidence interval (CI) 1.59-2.16; P < 0.001] and 1.19 (95% CI 1.07-1.32; P = 0.001), respectively. These associations lost significance after adjustment for baseline eGFRSCr-SCys [0.99 (95% CI 0.88-1.12; P = 0.86)] and baseline age [1.03 (95% CI 0.94-1.14; P = 0.50)], respectively. CONCLUSIONS: The associations of plasma dp-ucMGP with incident CKD and microalbuminuria were driven by the respective baseline effects of renal function and age.


Assuntos
Insuficiência Renal Crônica , Vitamina K , Adulto , Biomarcadores , Proteínas de Ligação ao Cálcio , Estudos de Coortes , Proteínas da Matriz Extracelular/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia
17.
PLoS One ; 15(7): e0235228, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32658909

RESUMO

PURPOSE: To assess specific risk factors and biomarkers associated with intimal arterial calcification (IAC) and medial arterial calcification (MAC). METHODS: We conducted a cross-sectional study in patients with or at risk of vascular disease from the SMART study(n = 520) and the DCS cohort(n = 198). Non-contrast computed tomography scanning of the lower extremities was performed and calcification in the femoral and crural arteries was scored as absent, predominant IAC, predominant MAC or indistinguishable. Multinomial regression models were used to assess the associations between cardiovascular risk factors and calcification patterns. Biomarkers for inflammation, calcification and vitamin K status were measured in a subset of patients with IAC(n = 151) and MAC(n = 151). RESULTS: Femoral calcification was found in 77% of the participants, of whom 38% had IAC, 28% had MAC and 11% were scored as indistinguishable. The absolute agreement between the femoral and crural arteries was high(69%). Higher age, male sex, statin use and history of coronary artery disease were associated with higher prevalences of femoral IAC and MAC compared to absence of calcification. Smoking and low ankle-brachial-index (ABI) were associated with higher prevalence of IAC and high ABI was associated with less IAC. Compared to patients with IAC, patients with MAC more often had diabetes, have a high ABI and were less often smokers. Inactive Matrix-Gla Protein was associated with increased MAC prevalence, while osteonectin was associated with decreased risk of MAC, compared to IAC. CONCLUSIONS: When femoral calcification is present, the majority of the patients have IAC or MAC throughout the lower extremity, which have different associated risk factor profiles.


Assuntos
Artéria Femoral/patologia , Doença Arterial Periférica/epidemiologia , Túnica Íntima/patologia , Túnica Média/patologia , Calcificação Vascular/epidemiologia , Idoso , Biomarcadores/sangue , Estudos Transversais , Feminino , Artéria Femoral/diagnóstico por imagem , Humanos , Extremidade Inferior/irrigação sanguínea , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/sangue , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/patologia , Prevalência , Medição de Risco , Fatores de Risco , Tomografia Computadorizada por Raios X , Túnica Íntima/diagnóstico por imagem , Túnica Média/diagnóstico por imagem , Calcificação Vascular/sangue , Calcificação Vascular/diagnóstico , Calcificação Vascular/patologia , Vitamina K/sangue
18.
Nephrol Dial Transplant ; 35(1): 65-73, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715488

RESUMO

BACKGROUND: Optimal phosphate control is an unmet need in chronic kidney disease (CKD). High serum phosphate increases calcification burden and is associated with mortality and cardiovascular disease in CKD. Nicotinamide (NA) alone or in combination with calcium-free phosphate binders might be a strategy to reduce phosphate levels and calcification and thus impact cardiovascular disease in CKD. METHODS: We studied the effect of NA alone and in combination with magnesium carbonate (MgCO3) as a potential novel treatment strategy. CKD was induced in dilute brown non-agouti/2 mice by subtotal nephrectomy followed by a high-phosphate diet (HP) and 7 weeks of treatment with NA, MgCO3 or their combination. Control mice underwent subtotal nephrectomy and received an HP or underwent sham surgery and received standard chow plus NA. RESULTS: CKD mice showed increased serum fibroblast growth factor 23 and calcium-phosphate product that was normalized by all treatment regimes. NA alone increased soft tissue and vascular calcification, whereas any treatment with MgCO3 significantly reduced calcification severity in CKD. While MgCO3 supplementation alone resulted in decreased calcification severity, it resulted in increased intestinal expression of the phosphate transporters type II sodium-dependent phosphate transporter 1 (Pit-1). Combined therapy of MgCO3 and NA reduced tissue calcification and normalized expression levels of intestinal phosphate transporter proteins. CONCLUSIONS: In conclusion, the data indicate that NA increases while MgCO3 reduces ectopic calcification severity. Augmented expression of intestinal phosphate transporters by MgCO3 treatment was abolished by the addition of NA. However, the clinical relevance of the latter remains to be explored. Importantly, the data suggest no benefit of NA regarding treatment of calcification in addition to MgCO3.


Assuntos
Magnésio/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Niacinamida/farmacologia , Insuficiência Renal Crônica/complicações , Uremia/complicações , Calcificação Vascular/prevenção & controle , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos DBA , Músculo Liso Vascular/citologia , Calcificação Vascular/etiologia , Complexo Vitamínico B/farmacologia
19.
Int J Mol Sci ; 20(4)2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30791399

RESUMO

Vitamin K is an essential bioactive compound required for optimal body function. Vitamin K can be present in various isoforms, distinguishable by two main structures, namely, phylloquinone (K1) and menaquinones (K2). The difference in structure between K1 and K2 is seen in different absorption rates, tissue distribution, and bioavailability. Although differing in structure, both act as cofactor for the enzyme gamma-glutamylcarboxylase, encompassing both hepatic and extrahepatic activity. Only carboxylated proteins are active and promote a health profile like hemostasis. Furthermore, vitamin K2 in the form of MK-7 has been shown to be a bioactive compound in regulating osteoporosis, atherosclerosis, cancer and inflammatory diseases without risk of negative side effects or overdosing. This review is the first to highlight differences between isoforms vitamin K1 and K2 by means of source, function, and extrahepatic activity.


Assuntos
Coagulação Sanguínea , Suscetibilidade a Doenças , Vitamina K/metabolismo , Animais , Disponibilidade Biológica , Suplementos Nutricionais , Humanos , Redes e Vias Metabólicas , Vitamina K 1/metabolismo , Vitamina K 2/metabolismo
20.
J Crit Care ; 49: 105-109, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30415179

RESUMO

BACKGROUND: Vitamin K is a cofactor for proteins involved in cardiovascular health, bone metabolism and cancer. Measuring uncarboxylated prothrombin, also termed as "protein induced by vitamin K absence or antagonism for factor II (PIVKA-II)", has been used to assess vitamin K status. High levels may indicate vitamin K deficiency. The aim of this study was to measure PIVKA-II and prothrombin time (PT-INR) in intensive care (ICU) patients and correlate vitamin K status with mortality. METHODS: Ninety-five patients admitted to the ICU had blood samples taken near admission and every third day. In addition to PIVKA-II and PT-INR, critical-care severity scores were computed. RESULTS: The median baseline PIVKA-II was 4.97 µg/L compared to the upper reference of 2.0 µg/L. PIVKA-II further increased at days 3 and 6, (median 7.88 µg/L, p = .047 and median 8.14 µg/L, p = .011) predominantly in cardiac arrest patients (median 21.4 µg/L, day 3). CONCLUSION: Intensive care patients have increased PIVKA-II levels at admission, which increases during the ICU stay, especially in cardiac arrest patients. There were no correlations between PIVKA-II and PT-INR, SOFA score or mortality. Further studies are needed to determine why PIVKA-II increases and whether high PIVKA-II levels in ICU patients affect long-term mortality or morbidity.


Assuntos
Biomarcadores/metabolismo , Estado Terminal , Precursores de Proteínas/metabolismo , Protrombina/metabolismo , Deficiência de Vitamina K/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Parada Cardíaca/metabolismo , Humanos , Coeficiente Internacional Normatizado , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tempo de Protrombina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA