Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 325: 117870, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38331121

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Masson Pine pollen (Pinus massoniana; MP) are used in Traditional Chinese Medicine to treat gut conditions. Early in vivo work supports this claim and suggests interaction of the material with the gastrointestinal immune system. AIM OF THE STUDY: The present study tested if and how MP material activates HD11 chicken macrophages in vitro using material from different production sites and harvest years. MATERIAL & METHODS: We applied twelve batches of MP from different Chinese production sites and harvest years. Materials were subjected to LAL tests (endotoxic activity), GC-MS (fatty acid analysis), and plate techniques (microbiological background, antimicrobial activity). Furthermore, HD11 chicken macrophages were challenged (6 h, 37 °C) with MP or LPS (E. coli O111:B4), respectively, to quantify nitric oxide (NO) production and immune gene expression (RT-qPCR). RESULTS: MP material promoted strong signals in LAL tests and contained significant amounts of 3-hydroxydodecanoic acid and 3-hydroxymyristic acid, irrespective of processing, harvest year, or origin. The pollen material activated HD11 chicken macrophages, which was confirmed by spikes of NO release and k-means cluster analysis of TLR-signaling pathway gene expression data. Response of NO production to Log2-titration of MP and LPS-treated media was in any case linear and significant. The response was reduced by polymyxin-B (PMB) and the inhibition was twice as strong for LPS than MP. No or minor microbiological background was detected on the majority of MP samples. Three samples showed presence of spoilage microorganisms and Gram-negative bacteria, but this did not correlate to LAL data or bacterial DNA counts. No antimicrobial activity of MP was evident. CONCLUSION: Pollen of the Masson Pine activated HD11 chicken macrophages in vitro, which is likely partially due to a background of bacterial LPS associated with the pollen material. However, as most of the effect (appr. 80%) could not be blocked by PMB this is certainly due to other stimuli. We hypothesize that polysaccharides and oligosaccharides of the pollen matrix have the potential to interact with certain immune receptors presented on the plasma membrane of chicken macrophages.


Assuntos
Galinhas , Pinus , Animais , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Escherichia coli , Linhagem Celular , Macrófagos , Pólen
2.
Eur J Immunol ; 53(12): e2350503, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37735713

RESUMO

The availability of genetically modified mice has facilitated the study of mammalian T cells. No model has yet been developed to study these cells in chickens, an important livestock species with a high availability of γδ T cells. To investigate the role of γδ and αß T cell populations in birds, we generated chickens lacking these T cell populations. This was achieved by genomic deletion of the constant region of the T cell receptor γ or ß chain, leading to a complete loss of either γδ or αß T cells. Our results show that a deletion of αß T cells but not γδ T cells resulted in a severe phenotype in KO chickens. The αß T cell KO chickens exhibited granulomas associated with inflammation of the spleen and the proventriculus. Immunophenotyping of αß T cell KO chickens revealed a significant increase in monocytes and expectedly the absence of CD4+ T cells including FoxP3+ regulatory T cells. Surprisingly there was no increase of γδ T cells. In addition, we observed a significant decrease in immunoglobulins, B lymphocytes, and changes in the bursa morphology. Our data reveal the consequences of T cell knockouts in chickens and provide new insights into their function in vertebrates.


Assuntos
Galinhas , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Camundongos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Fenótipo , Linfócitos B , Mamíferos
3.
Vet Sci ; 10(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36851429

RESUMO

Most canine intestinal tumours are B-cell or T-cell lymphomas or carcinomas. They have to be distinguished from cases of enteritis. Non-invasive biomarkers such as miRNAs would be a step towards faster diagnosis. The aim of this study was to investigate shifts in miRNA expression in tissue samples collected from cases of enteritis, carcinoma and lymphoma of the small and large intestine to better understand the potential of miRNA as biomarkers for tumour diagnosis and classification. We selected two oncogenic miRNAs (miR-18b and 20b), two tumour suppressive miRNAs (miR-192 and 194) and two potential biomarkers for neoplasms (miR-126 and 214). They were isolated from FFPE material, quantified by ddPCR, normalised with RNU6B and compared with normal tissue values. Our results confirmed that ddPCR is a suitable method for quantifying miRNA from FFPE material. Expression of miR-18b and miR-192 was higher in carcinomas of the small intestine than in those of the large intestine. Specific miRNA patterns were observed in cases of enteritis, B-cell and T-cell lymphoma and carcinoma. However, oncogenic miR-18b and 20b were not elevated in any group and miR-126 and 214 were down-regulated in T-cell and B-cell lymphoma, as well as in carcinomas and lymphoplasmacytic enteritis of the small intestine.

4.
Vet Sci ; 9(9)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36136693

RESUMO

Background: Gastrointestinal masses in cats are of clinical relevance, but pathological studies with larger case numbers are lacking. Biomarkers such as miRNA have not yet been investigated in feline intestinal neoplasms. Methods: A retrospective analysis of pathology reports included 860 feline gastrointestinal masses. Immunohistochemistry was performed on 91 lymphomas, 10 sarcomas and 7 mast cell tumours (MCT). Analyses of miRNA-20b and miRNA-192 were performed on 11 lymphomas, 5 carcinomas and 5 control tissues by ddPCR. Results: The pathological diagnosis identified 679 lymphomas, 122 carcinomas, 28 sarcomas, 23 polyps, 7 MCT and 1 leiomyoma. Carcinomas and polyps were most commonly found in the large intestine, lymphomas were most commonly found in the stomach and small intestine and MCT only occurred in the small intestine. Besides the well-described small-cell, mitotic count <2 T-cell lymphomas and the large-cell B-cell lymphomas with a high mitotic count, several variants of lymphomas were identified. The values of miRNA-20b were found to be up-regulated in samples of all types of cancer, whereas miRNA-192 was only up-regulated in carcinomas and B-cell lymphomas. Conclusions: The histopathological and immunohistochemical (sub-)classification of feline intestinal masses confirmed the occurrence of different tumour types, with lymphoma being the most frequent neoplasm. Novel biomarkers such as miRNA-20b and miRNA-192 might have diagnostic potential in feline intestinal neoplasms and should be further investigated.

5.
Sci Rep ; 10(1): 10919, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616820

RESUMO

Marek's disease virus (MDV) is a highly cell-associated alphaherpesvirus that causes deadly lymphomas in chickens. While vaccination protects against clinical symptoms, MDV field strains can still circulate in vaccinated flocks and continuously evolve towards greater virulence. MDV vaccines do not provide sterilizing immunity, allowing the virus to overcome vaccine protection, and has increased the need for more potent vaccines or alternative interventions. In this study, we addressed if the CRISPR/Cas9 system can protect cells from MDV replication. We first screened a number of guide RNAs (gRNAs) targeting essential MDV genes for their ability to prevent virus replication. Single gRNAs significantly inhibited virus replication, but could result in the emergence of escape mutants. Strikingly, combining two or more gRNAs completely abrogated virus replication and no escape mutants were observed upon serial passaging. Our study provides the first proof-of-concept, demonstrating that the CRISPR/Cas9 system can be efficiently used to block MDV replication. The presented findings lay the foundation for future research to completely protect chickens from this deadly pathogen.


Assuntos
Sistemas CRISPR-Cas , Mardivirus/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Embrião de Galinha , Galinhas , Patos , Genes Virais , Células HEK293 , Humanos , Mardivirus/genética , Mardivirus/fisiologia , Doença de Marek/prevenção & controle , Vacinas contra Doença de Marek , Mutação , Estudo de Prova de Conceito , RNA Guia de Cinetoplastídeos/genética , Organismos Livres de Patógenos Específicos , Replicação Viral/genética
6.
Front Genome Ed ; 2: 3, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34713212

RESUMO

Genome editing technology provides new possibilities for animal breeding and aid in understanding host-pathogen interactions. In poultry, retroviruses display one of the most difficult pathogens to control by conventional strategies such as vaccinations. Avian leukosis virus subgroup J (ALV-J) is an oncogenic, immunosuppressive retrovirus that causes myeloid leukosis and other tumors in chickens. Severe economic losses caused by ALV-J remain an unsolved problem in many parts of the world due to inefficient eradication strategies and lack of effective vaccines. ALV-J attachment and entry are mediated through the specific receptor, chicken Na+/H+ exchanger type 1 (chNHE1). The non-conserved amino acid tryptophan 38 (W38) in chNHE1 is crucial for virus entry, making it a favorable target for the introduction of disease resistance. In this study, we obtained ALV-J-resistance in a commercial chicken line by precise deletion of chNHE1 W38, utilizing the CRISPR/Cas9-system in combination with homology directed repair. The genetic modification completely protected cells from infection with a subgroup J retrovirus. W38 deletion did neither have a negative effect on the development nor on the general health condition of the gene edited chickens. Overall, the generation of ALV-J-resistant birds by precise gene editing demonstrates the immense potential of this approach as an alternative disease control strategy in poultry.

7.
Proc Natl Acad Sci U S A ; 115(45): 11603-11607, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30337483

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes immunosuppression, paralysis, and deadly lymphomas in chickens. In infected animals, B cells are efficiently infected and are thought to amplify the virus and transfer it to T cells. MDV subsequently establishes latency in T cells and transforms CD4+ T cells, resulting in fatal lymphomas. Despite many years of research, the exact role of the different B and T cell subsets in MDV pathogenesis remains poorly understood, mostly due to the lack of reverse genetics in chickens. Recently, Ig heavy chain J gene segment knockout (JH-KO) chickens lacking mature and peripheral B cells have been generated. To determine the role of these B cells in MDV pathogenesis, we infected JH-KO chickens with the very virulent MDV RB1B strain. Surprisingly, viral load in the blood of infected animals was not altered in the absence of B cells. More importantly, disease and tumor incidence in JH-KO chickens was comparable to wild-type animals, suggesting that both mature and peripheral B cells are dispensable for MDV pathogenesis. Intriguingly, MDV efficiently replicated in the bursa of Fabricius in JH-KO animals, while spread of the virus to the spleen and thymus was delayed. In the absence of B cells, MDV readily infected CD4+ and CD8+ T cells, allowing efficient virus replication in the lymphoid organs and transformation of T cells. Taken together, our data change the dogma of the central role of B cells, and thereby provide important insights into MDV pathogenesis.


Assuntos
Linfócitos B/imunologia , Genoma Viral , Herpesvirus Galináceo 2/patogenicidade , Linfoma/patologia , Doença de Marek/patologia , Vírus Oncogênicos/patogenicidade , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Bolsa de Fabricius/imunologia , Bolsa de Fabricius/virologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Embrião de Galinha , Galinhas , DNA Viral/genética , DNA Viral/imunologia , Herpesvirus Galináceo 2/genética , Herpesvirus Galináceo 2/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Contagem de Linfócitos , Linfoma/genética , Linfoma/imunologia , Linfoma/virologia , Doença de Marek/genética , Doença de Marek/imunologia , Doença de Marek/virologia , Vírus Oncogênicos/genética , Vírus Oncogênicos/imunologia , Baço/imunologia , Baço/virologia , Timo/imunologia , Timo/virologia , Carga Viral , Virulência , Replicação Viral
8.
Front Immunol ; 9: 605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719531

RESUMO

Tumor necrosis factor-α (TNF-α) is a pleiotropic cytokine playing critical roles in host defense and acute and chronic inflammation. It has been described in fish, amphibians, and mammals but was considered to be absent in the avian genomes. Here, we report on the identification and functional characterization of the avian ortholog. The chicken TNF-α (chTNF-α) is encoded by a highly GC-rich gene, whose product shares with its mammalian counterpart 45% homology in the extracellular part displaying the characteristic TNF homology domain. Orthologs of chTNF-α were identified in the genomes of 12 additional avian species including Palaeognathae and Neognathae, and the synteny of the closely adjacent loci with mammalian TNF-α orthologs was demonstrated in the crow (Corvus cornix) genome. In addition to chTNF-α, we obtained full sequences for homologs of TNF-α receptors 1 and 2 (TNFR1, TNFR2). chTNF-α mRNA is strongly induced by lipopolysaccharide (LPS) stimulation of monocyte derived, splenic and bone marrow macrophages, and significantly upregulated in splenic tissue in response to i.v. LPS treatment. Activation of T-lymphocytes by TCR crosslinking induces chTNF-α expression in CD4+ but not in CD8+ cells. To gain insights into its biological activity, we generated recombinant chTNF-α in eukaryotic and prokaryotic expression systems. Both, the full-length cytokine and the extracellular domain rapidly induced an NFκB-luciferase reporter in stably transfected CEC-32 reporter cells. Collectively, these data provide strong evidence for the existence of a fully functional TNF-α/TNF-α receptor system in birds thus filling a gap in our understanding of the evolution of cytokine systems.


Assuntos
Proteínas Aviárias/genética , Linfócitos T CD4-Positivos/imunologia , Galinhas/imunologia , Macrófagos/imunologia , Receptores do Fator de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/genética , Animais , Proteínas Aviárias/metabolismo , Células Cultivadas , Clonagem Molecular , Corvos/imunologia , Sequência Rica em GC/genética , Humanos , Mamíferos/imunologia , NF-kappa B/metabolismo , Paleógnatas/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Alinhamento de Sequência
9.
Gastroenterology ; 154(6): 1791-1804.e22, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29410097

RESUMO

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. METHODS: PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. RESULTS: HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. CONCLUSIONS: In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response.


Assuntos
Antivirais/farmacologia , Hepacivirus/imunologia , Vírus da Hepatite B/imunologia , Hepatócitos/imunologia , Imunidade Inata/imunologia , Interferons/farmacologia , Coinfecção/tratamento farmacológico , Coinfecção/imunologia , Coinfecção/virologia , DNA Viral/efeitos dos fármacos , DNA Viral/imunologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite B/tratamento farmacológico , Hepatite B/imunologia , Hepatite B/virologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/genética , Hepatite C/tratamento farmacológico , Hepatite C/imunologia , Hepatite C/virologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Humanos , Fígado/citologia , Fígado/imunologia , Fígado/virologia , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA