Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 243(3): 1034-1049, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38853453

RESUMO

Processing by proteases irreversibly regulates the fate of plant proteins and hampers the production of recombinant proteins in plants, yet only few processing events have been described in agroinfiltrated Nicotiana benthamiana, which has emerged as the main transient protein expression platform in plant science and molecular pharming. Here, we used in-gel digests and mass spectrometry to monitor the migration and topography of 5040 plant proteins within a protein gel. By plotting the peptides over the gel slices, we generated peptographs that reveal where which part of each protein was detected within the protein gel. These data uncovered that 60% of the detected proteins have proteoforms that migrate at lower than predicted molecular weights, implicating extensive proteolytic processing. This analysis confirms the proteolytic removal and degradation of autoinhibitory prodomains of most but not all proteases, and revealed differential processing within pectinemethylesterase and lipase families. This analysis also uncovered intricate processing of glycosidases and uncovered that ectodomain shedding might be common for a diverse range of receptor-like kinases. Transient expression of double-tagged candidate proteins confirmed processing events in vivo. This large proteomic dataset implicates an elaborate proteolytic machinery shaping the proteome of N. benthamiana.


Assuntos
Nicotiana , Proteínas de Plantas , Proteólise , Proteoma , Nicotiana/genética , Nicotiana/metabolismo , Proteoma/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteômica , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Lipase/metabolismo , Lipase/genética , Peptídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genética
2.
Plant Cell ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38923940

RESUMO

Secreted immune proteases Rcr3 (Required for Cladosporium resistance-3) and Pip1 (Phytophthora- inhibited protease-1) of tomato (Solanum lycopersicum) are both inhibited by Avr2 from the fungal plant pathogen Cladosporium fulvum. However, only Rcr3 acts as a decoy co-receptor that detects Avr2 in the presence of the Cf-2 immune receptor. Here, we identified crucial residues in tomato Rcr3 that are required for Cf-2-mediated signalling and bioengineered various proteases to trigger Avr2/Cf-2-dependent immunity. Despite substantial divergence in Rcr3 orthologs from eggplant (Solanum melongena) and tobacco (Nicotiana spp.), minimal alterations were sufficient to trigger Avr2/Cf-2-mediated immune signalling. By contrast, tomato Pip1 was bioengineered with 16 Rcr3-specific residues to initiate Avr2/Cf-2-triggered immune signalling. These residues cluster on one side of the protein next to the substrate-binding groove, indicating a potential Cf-2 interaction site. Our findings also revealed that Rcr3 and Pip1 have distinct substrate preferences determined by two variant residues, and that both are suboptimal for binding Avr2. This study advances our understanding of Avr2 perception and opens avenues to bioengineer proteases to broaden pathogen recognition in other crops.

3.
Methods Mol Biol ; 2447: 53-66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35583772

RESUMO

Protein expression in plants by agroinfiltration and subsequent purification is increasingly used for the biochemical characterization of plant proteins. In this chapter we describe the purification of secreted, His-tagged proteases from the apoplast of agroinfiltrated Nicotiana benthamiana using immobilized metal affinity chromatography (IMAC). We show quality checks for the purified protease and discuss potential problems and ways to circumvent them. As a proof of concept, we produce and purify tomato immune protease Pip1 and demonstrate that the protein is active after purification.


Assuntos
Nicotiana , Peptídeo Hidrolases , Cromatografia de Afinidade/métodos , Endopeptidases , Peptídeo Hidrolases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo
4.
Plant J ; 108(2): 600-612, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34369027

RESUMO

Agroinfiltration in Nicotiana benthamiana is widely used to transiently express heterologous proteins in plants. However, the state of Agrobacterium itself is not well studied in agroinfiltrated tissues, despite frequent studies of immunity genes conducted through agroinfiltration. Here, we generated a bioluminescent strain of Agrobacterium tumefaciens GV3101 to monitor the luminescence of Agrobacterium during agroinfiltration. By integrating a single copy of the lux operon into the genome, we generated a stable 'AgroLux' strain, which is bioluminescent without affecting Agrobacterium growth in vitro and in planta. To illustrate its versatility, we used AgroLux to demonstrate that high light intensity post infiltration suppresses both Agrobacterium luminescence and protein expression. We also discovered that AgroLux can detect Avr/Cf-induced immune responses before tissue collapse, establishing a robust and rapid quantitative assay for the hypersensitive response (HR). Thus, AgroLux provides a non-destructive, versatile and easy-to-use imaging tool to monitor both Agrobacterium and plant responses.


Assuntos
Agrobacterium tumefaciens/genética , Agricultura Molecular/métodos , Nicotiana/microbiologia , Imunidade Vegetal , Proteínas Recombinantes/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Medições Luminescentes , Microrganismos Geneticamente Modificados , Óperon , Folhas de Planta/microbiologia , Proteínas Recombinantes/metabolismo , Nicotiana/imunologia
5.
New Phytol ; 229(6): 3424-3439, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251609

RESUMO

The plant apoplast is a harsh environment in which hydrolytic enzymes, especially proteases, accumulate during pathogen infection. However, the defense functions of most apoplastic proteases remain largely elusive. We show here that a newly identified small cysteine-rich secreted protein PC2 from the potato late blight pathogen Phytophthora infestans induces immunity in Solanum plants only after cleavage by plant apoplastic subtilisin-like proteases, such as tomato P69B. A minimal 61 amino acid core peptide carrying two key cysteines, conserved widely in most oomycete species, is sufficient for PC2-induced cell death. Furthermore, we showed that Kazal-like protease inhibitors, such as EPI1, produced by P. infestans prevent PC2 cleavage and dampen PC2 elicited host immunity. This study reveals that cleavage of pathogen proteins to release immunogenic peptides is an important function of plant apoplastic proteases.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Doenças das Plantas , Imunidade Vegetal , Proteínas de Plantas , Subtilisinas
6.
Curr Biol ; 30(12): R715-R717, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32574636

RESUMO

Flower organ abscission in Arabidopsis is regulated by a peptide hormone that is released from its precursor by a network of redundant subtilases. An exciting new study describes how drought-induced flower abscission in tomato is regulated similarly, but distinctly via a single, different subtilase that releases a very different peptide hormone.


Assuntos
Hormônios Peptídicos , Solanum lycopersicum , Biologia , Secas , Flores , Regulação da Expressão Gênica de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA