Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Virol ; 93(23)2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31554689

RESUMO

In 2010, sporadic cases of avian leukosis virus (ALV)-like bursal lymphoma, also known as spontaneous lymphoid leukosis (LL)-like tumors, were identified in two commercial broiler breeder flocks in the absence of exogenous ALV infection. Two individual ALV subgroup E (ALV-E) field strains, designated AF227 and AF229, were isolated from two different breeder farms. The role of these ALV-E field isolates in development of and the potential joint impact in conjunction with a Marek's disease virus (MDV) vaccine (SB-1) were further characterized in chickens of an experimental line and commercial broiler breeders. The experimental line 0.TVB*S1, commonly known as the rapid feathering-susceptible (RFS) line, of chickens lacks all endogenous ALV and is fully susceptible to all subgroups of ALV, including ALV-E. Spontaneous LL-like tumors occurred following infection with AF227, AF229, and a reference ALV-E strain, RAV60, in RFS chickens. Vaccination with serotype 2 MDV, SB-1, in addition to AF227 or AF229 inoculation, significantly enhanced the spontaneous LL-like tumor incidence in the RFS chickens. The spontaneous LL-like tumor incidence jumped from 14% by AF227 alone to 42 to 43% by AF227 in combination with SB-1 in the RFS chickens under controlled conditions. RNA-sequencing analysis of the LL-like lymphomas and nonmalignant bursa tissues of the RFS line of birds identified hundreds of differentially expressed genes that are reportedly involved in key biological processes and pathways, including signaling and signal transduction pathways. The data from this study suggested that both ALV-E and MDV-2 play an important role in enhancement of the spontaneous LL-like tumors in susceptible chickens. The underlying mechanism may be complex and involved in many chicken genes and pathways, including signal transduction pathways and immune system processes, in addition to reported viral genes.IMPORTANCE Lymphoid leukosis (LL)-like lymphoma is a low-incidence yet costly and poorly understood disease of domestic chickens. The observed unique characteristics of LL-like lymphomas are that the incidence of the disease is chicken line dependent; pathologically, it appeared to mimic avian leukosis but is free of exogenous ALV infection; inoculation of the nonpathogenic ALV-E or MDV-2 (SB-1) boosts the incidence of the disease; and inoculation of both the nonpathogenic ALV-E and SB-1 escalates it to much higher levels. This study was designed to test the impact of two new ALV-E isolates, recently derived from commercial broiler breeder flocks, in combination with the nonpathogenic SB-1 on LL-like lymphoma incidences in both an experimental egg layer line of chickens and a commercial broiler breeder line of chickens under a controlled condition. Data from this study provided an additional piece of experimental evidence on the potency of nonpathogenic ALV-E, MDV-2, and ALV-E plus MDV-2 in boosting the incidence of LL-like lymphomas in susceptible chickens. This study also generated the first piece of genomic evidence that suggests host transcriptomic variation plays an important role in modulating LL-like lymphoma formation.


Assuntos
Vírus da Leucose Aviária/isolamento & purificação , Leucose Aviária/complicações , Leucose Aviária/virologia , Coinfecção/virologia , Linfoma/complicações , Linfoma/virologia , Doença de Marek/complicações , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Vírus da Leucose Aviária/genética , Galinhas/virologia , Suscetibilidade a Doenças , Regulação Viral da Expressão Gênica , Genótipo , Herpesvirus Galináceo 3 , Incidência , Doença de Marek/virologia , Vacinas contra Doença de Marek , Análise de Sequência de DNA , Transdução de Sinais , Transcriptoma , Vacinação , Vacinas Virais
2.
Hum Mol Genet ; 28(10): 1726-1737, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30689861

RESUMO

Mutations in IRF6, TFAP2A and GRHL3 cause orofacial clefting syndromes in humans. However, Tfap2a and Grhl3 are also required for neurulation in mice. Here, we found that homeostasis of Irf6 is also required for development of the neural tube and associated structures. Over-expression of Irf6 caused exencephaly, a rostral neural tube defect, through suppression of Tfap2a and Grhl3 expression. Conversely, loss of Irf6 function caused a curly tail and coincided with a reduction of Tfap2a and Grhl3 expression in tail tissues. To test whether Irf6 function in neurulation was conserved, we sequenced samples obtained from human cases of spina bifida and anencephaly. We found two likely disease-causing variants in two samples from patients with spina bifida. Overall, these data suggest that the Tfap2a-Irf6-Grhl3 genetic pathway is shared by two embryologically distinct morphogenetic events that previously were considered independent during mammalian development. In addition, these data suggest new candidates to delineate the genetic architecture of neural tube defects and new therapeutic targets to prevent this common birth defect.


Assuntos
Proteínas de Ligação a DNA/genética , Fatores Reguladores de Interferon/genética , Neurulação/genética , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Animais , Sequência Conservada/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Mutação , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/patologia , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Transdução de Sinais/genética , Disrafismo Espinal/genética , Disrafismo Espinal/patologia
3.
J Invest Dermatol ; 138(12): 2578-2588, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29913133

RESUMO

Variants in IRF6 can lead to Van der Woude syndrome and popliteal pterygium syndrome. Furthermore, genes upstream and downstream of IRF6, including GRHL3 and TP63, are also associated with orofacial clefting. Additionally, a variant in an enhancer (MCS9.7) that regulates IRF6 is associated with risk for isolated orofacial clefting. This variant (rs642961) abrogates AP2A protein binding at MCS9.7. Here, we found that AP2A protein regulates MCS9.7 enhancer activity in vivo and IRF6 protein expression in epidermal development. In addition, loss of IRF6 leads to supra-basal expression of AP2A protein. Finally, using an IRF6 allelic series, we found that either increasing or decreasing IRF6 protein expression can destabilize AP2A protein expression in vivo. These data suggest that IRF6 regulates AP2A protein level in epidermal development. Therefore, we conclude that IRF6 and TFAP2A are part of a genetic regulatory network that is critical in epithelial development, with implications for both orofacial and cutaneous tissues. Our work provides in vivo, functional data to explain the relationship between AP2A protein binding and the MCS9.7 enhancer in orofacial clefting. This work is important because the MCS9.7 enhancer element contains a variant that abrogates AP2A protein binding and increases risk for orofacial clefting worldwide.


Assuntos
Anormalidades Múltiplas/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Elementos Facilitadores Genéticos/genética , Epiderme/fisiologia , Anormalidades do Olho/genética , Dedos/anormalidades , Fatores Reguladores de Interferon/genética , Articulação do Joelho/anormalidades , Lábio/anormalidades , Deformidades Congênitas das Extremidades Inferiores/genética , Sindactilia/genética , Anormalidades Urogenitais/genética , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Alelos , Animais , Células Cultivadas , Redes Reguladoras de Genes , Humanos , Camundongos , Camundongos Transgênicos , Organogênese/genética , Polimorfismo de Nucleotídeo Único , Ligação Proteica , Estabilidade Proteica
4.
J Perinat Med ; 46(4): 441-449, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28822225

RESUMO

BACKGROUND: The adaptive immune system of neonates is relatively underdeveloped. The thymus is an essential organ for adaptive T cell development and might be affected during the natural course of oxygen induced lung injury. The effect of prolonged hyperoxia on the thymus, thymocyte and T cell development, and its proliferation has not been studied extensively. METHODS: Neonatal mice were exposed to 85% oxygen (hyperoxia) or room air (normoxia) up to 28 days. Flow cytometry using surface markers were used to assay for thymocyte development and proliferation. RESULTS: Mice exposed to prolonged hyperoxia had evidence of lung injury associated alveolar simplification, a significantly lower mean weight, smaller thymic size, lower mean thymocyte count and higher percentage of apoptotic thymocytes. T cells subpopulation in the thymus showed a significant reduction in the count and proliferation of double positive and double negative T cells. There was a significant reduction in the count and proliferation of single positive CD4+ and CD8+ T cells. CONCLUSIONS: Prolonged hyperoxia in neonatal mice adversely affected thymic size, thymocyte count and altered the distribution of T cells sub-populations. These results are consistent with the hypothesis that prolonged hyperoxia causes defective development of T cells in the thymus.


Assuntos
Displasia Broncopulmonar/imunologia , Hiperóxia/imunologia , Timócitos/fisiologia , Timo/patologia , Animais , Displasia Broncopulmonar/patologia , Feminino , Hiperóxia/patologia , Hiperóxia/fisiopatologia , Pulmão/patologia , Camundongos Endogâmicos C57BL , Gravidez , Timo/fisiopatologia
5.
Genesis ; 55(7)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28481036

RESUMO

Interferon Regulatory Factor 6 (IRF6) is a critical regulator of differentiation, proliferation, and migration of keratinocytes. Mutations in IRF6 cause two autosomal dominant disorders characterized by cleft lip with or without cleft palate. In addition, DNA variation in IRF6 confers significant risk for non-syndromic cleft lip and palate. IRF6 is also implicated in adult onset development and disease processes, including mammary gland development and squamous cell carcinoma. Mice homozygous for a null allele of Irf6 die shortly after birth due to severe skin, limb, and craniofacial defects, thus impeding the study of gene function after birth. To circumvent this, a conditional allele of Irf6 was generated. To validate the functionality of the conditional allele, we used three "deleter" Cre strains: Gdf9-Cre, CAG-Cre, and Ella-Cre. When Cre expression was driven by the Gdf9-Cre or CAG-Cre transgenes, 100% recombination was observed as indicated by DNA genotyping and phenotyping. In contrast, use of the Ella-Cre transgenic line resulted in incomplete recombination, despite expression at the one-cell stage. In sum, we generated a novel tool to delete Irf6 in a tissue specific fashion, allowing for study of gene function past perinatal stages. However, recombination efficiency of this allele was dictated by the Cre-driver used.


Assuntos
Alelos , Marcação de Genes/métodos , Fatores Reguladores de Interferon/genética , Animais , Recombinação Homóloga , Homozigoto , Integrases/genética , Integrases/metabolismo , Fatores Reguladores de Interferon/metabolismo , Camundongos , Fenótipo
6.
Birth Defects Res ; 109(2): 169-179, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933721

RESUMO

BACKGROUND: Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. METHODS: We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. RESULTS: We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. CONCLUSION: These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Defeitos do Tubo Neural/genética , Neurulação/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Fenda Labial/metabolismo , Fenda Labial/patologia , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mineração de Dados , Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Mutação , Tubo Neural/anormalidades , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Organogênese/genética , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Dev Dyn ; 245(3): 220-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26332872

RESUMO

Orofacial clefting is a common birth defect with significant morbidity. A panoply of candidate genes have been discovered through synergy of animal models and human genetics. Among these, variants in interferon regulatory factor 6 (IRF6) cause syndromic orofacial clefting and contribute risk toward isolated cleft lip and palate (1/700 live births). Rare variants in IRF6 can lead to Van der Woude syndrome (1/35,000 live births) and popliteal pterygium syndrome (1/300,000 live births). Furthermore, IRF6 regulates GRHL3 and rare variants in this downstream target can also lead to Van der Woude syndrome. In addition, a common variant (rs642961) in the IRF6 locus is found in 30% of the world's population and contributes risk for isolated orofacial clefting. Biochemical studies revealed that rs642961 abrogates one of four AP-2alpha binding sites. Like IRF6 and GRHL3, rare variants in TFAP2A can also lead to syndromic orofacial clefting with lip pits (branchio-oculo-facial syndrome). The literature suggests that AP-2alpha, IRF6 and GRHL3 are part of a pathway that is essential for lip and palate development. In addition to updating the pathways, players and pursuits, this review will highlight some of the current questions in the study of orofacial clefting.


Assuntos
Anormalidades Múltiplas/epidemiologia , Fenda Labial/epidemiologia , Fissura Palatina/epidemiologia , Cistos/epidemiologia , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Loci Gênicos , Fatores Reguladores de Interferon/metabolismo , Lábio/anormalidades , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/metabolismo , Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Proteínas de Ligação a DNA/genética , Humanos , Fatores Reguladores de Interferon/genética , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética
8.
Am J Hum Genet ; 96(3): 397-411, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25704602

RESUMO

Although genome-wide association studies (GWASs) for nonsyndromic orofacial clefts have identified multiple strongly associated regions, the causal variants are unknown. To address this, we selected 13 regions from GWASs and other studies, performed targeted sequencing in 1,409 Asian and European trios, and carried out a series of statistical and functional analyses. Within a cluster of strongly associated common variants near NOG, we found that one, rs227727, disrupts enhancer activity. We furthermore identified significant clusters of non-coding rare variants near NTN1 and NOG and found several rare coding variants likely to affect protein function, including four nonsense variants in ARHGAP29. We confirmed 48 de novo mutations and, based on best biological evidence available, chose two of these for functional assays. One mutation in PAX7 disrupted the DNA binding of the encoded transcription factor in an in vitro assay. The second, a non-coding mutation, disrupted the activity of a neural crest enhancer downstream of FGFR2 both in vitro and in vivo. This targeted sequencing study provides strong functional evidence implicating several specific variants as primary contributory risk alleles for nonsyndromic clefting in humans.


Assuntos
Encéfalo/anormalidades , Proteínas de Transporte/genética , Fenda Labial/genética , Fissura Palatina/genética , Fator de Transcrição PAX7/genética , Polimorfismo de Nucleotídeo Único , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Alelos , Sequência de Aminoácidos , Animais , Povo Asiático/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fator de Transcrição PAX7/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , População Branca/genética , Peixe-Zebra/genética
9.
Hum Mol Genet ; 23(10): 2711-20, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24442519

RESUMO

DNA variation in Interferon Regulatory Factor 6 (IRF6) causes Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate (CLP). However, an etiologic variant in IRF6 has been found in only 70% of VWS families. To test whether DNA variants in regulatory elements cause VWS, we sequenced three conserved elements near IRF6 in 70 VWS families that lack an etiologic mutation within IRF6 exons. A rare mutation (350dupA) was found in a conserved IRF6 enhancer element (MCS9.7) in a Brazilian family. The 350dupA mutation abrogated the binding of p63 and E47 transcription factors to cis-overlapping motifs, and significantly disrupted enhancer activity in human cell cultures. Moreover, using a transgenic assay in mice, the 350dupA mutation disrupted the activation of MCS9.7 enhancer element and led to failure of lacZ expression in all head and neck pharyngeal arches. Interestingly, disruption of the p63 Motif1 and/or E47 binding sites by nucleotide substitution did not fully recapitulate the effect of the 350dupA mutation. Rather, we recognized that the 350dupA created a CAAAGT motif, a binding site for Lef1 protein. We showed that Lef1 binds to the mutated site and that overexpression of Lef1/ß-Catenin chimeric protein repressed MCS9.7-350dupA enhancer activity. In conclusion, our data strongly suggest that 350dupA variant is an etiologic mutation in VWS patients and disrupts enhancer activity by a loss- and gain-of-function mechanism, and thus support the rationale for additional screening for regulatory mutations in patients with CLP.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Lábio/anormalidades , Sequência de Bases , Sítios de Ligação , Estudos de Casos e Controles , Linhagem Celular Tumoral , Análise Mutacional de DNA , Elementos Facilitadores Genéticos , Feminino , Estudos de Associação Genética , Células HEK293 , Humanos , Fatores Reguladores de Interferon/metabolismo , Masculino , Linhagem , Mutação Puntual , Ligação Proteica , Fator 3 de Transcrição/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
10.
Am J Hum Genet ; 94(1): 23-32, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24360809

RESUMO

Mutations in interferon regulatory factor 6 (IRF6) account for ∼70% of cases of Van der Woude syndrome (VWS), the most common syndromic form of cleft lip and palate. In 8 of 45 VWS-affected families lacking a mutation in IRF6, we found coding mutations in grainyhead-like 3 (GRHL3). According to a zebrafish-based assay, the disease-associated GRHL3 mutations abrogated periderm development and were consistent with a dominant-negative effect, in contrast to haploinsufficiency seen in most VWS cases caused by IRF6 mutations. In mouse, all embryos lacking Grhl3 exhibited abnormal oral periderm and 17% developed a cleft palate. Analysis of the oral phenotype of double heterozygote (Irf6(+/-);Grhl3(+/-)) murine embryos failed to detect epistasis between the two genes, suggesting that they function in separate but convergent pathways during palatogenesis. Taken together, our data demonstrated that mutations in two genes, IRF6 and GRHL3, can lead to nearly identical phenotypes of orofacial cleft. They supported the hypotheses that both genes are essential for the presence of a functional oral periderm and that failure of this process contributes to VWS.


Assuntos
Anormalidades Múltiplas/patologia , Fenda Labial/patologia , Fissura Palatina/patologia , Cistos/patologia , Proteínas de Ligação a DNA/genética , Lábio/anormalidades , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Alelos , Animais , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Hibridização Genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Lábio/patologia , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética
11.
Am J Med Genet A ; 161A(10): 2535-2544, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23949966

RESUMO

Van der Woude syndrome is the most common form of syndromic orofacial clefting, accounting for 1-2% of all patients with cleft lip and/or cleft palate. Van der Woude and popliteal pterygium syndromes are caused by mutations in IRF6, but phenotypic variability within and among families with either syndrome suggests that other genetic factors contribute to the phenotypes. The aim of this study was to identify common variants acting as genetic modifiers of IRF6 as well as genotype-phenotype correlations based on mutation type and location. We identified an association between mutations in the DNA-binding domain of IRF6 and limb defects (including pterygia). Although we did not detect formally significant associations with the genes tested, borderline associations suggest several genes that could modify the VWS phenotype, including FOXE1, TGFB3, and TFAP2A. Some of these genes are hypothesized to be part of the IRF6 gene regulatory network and may suggest additional genes for future study when larger sample sizes are also available. We also show that families with the Van de Woude phenotype but in whom no mutations have been identified have a lower frequency of cleft lip, suggesting there may be locus and/or mutation class differences in Van de Woude syndrome.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Anormalidades do Olho/genética , Dedos/anormalidades , Estudos de Associação Genética , Fatores Reguladores de Interferon/genética , Articulação do Joelho/anormalidades , Lábio/anormalidades , Deformidades Congênitas das Extremidades Inferiores/genética , Sindactilia/genética , Anormalidades Urogenitais/genética , Alelos , Família , Frequência do Gene , Genótipo , Haplótipos , Humanos , Fatores Reguladores de Interferon/química , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Domínios e Motivos de Interação entre Proteínas/genética
12.
Genet Med ; 15(5): 338-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23154523

RESUMO

PURPOSE: Mutations in the transcription factor IRF6 cause allelic autosomal dominant clefting syndromes, Van der Woude syndrome, and popliteal pterygium syndrome. We compared the distribution of IRF6 coding and splice-site mutations from 549 families with Van der Woude syndrome or popliteal pterygium syndrome with that of variants from the 1000 Genomes and National Heart, Lung, and Blood Institute Exome Sequencing Projects. METHODS: We compiled all published pathogenic IRF6 mutations and performed direct sequencing of IRF6 in families with Van der Woude syndrome or popliteal pterygium syndrome. RESULTS: Although mutations causing Van der Woude syndrome or popliteal pterygium syndrome were nonrandomly distributed with significantly increased frequencies in the DNA-binding domain (P = 0.0001), variants found in controls were rare and evenly distributed in IRF6. Of 194 different missense or nonsense variants described as potentially pathogenic, we identified only two in more than 6,000 controls. PolyPhen and SIFT (sorting intolerant from tolerant) reported 5.9% of missense mutations in patients as benign, suggesting that use of current in silico prediction models to determine function can have significant false negatives. CONCLUSION: Mutation of IRF6 occurs infrequently in controls, suggesting that for IRF6 there is a high probability that disruption of the coding sequence, particularly the DNA-binding domain, will result in syndromic features. Prior associations of coding sequence variants in IRF6 with clefting syndromes have had few false positives.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Biologia Computacional , Cistos/genética , Exoma , Anormalidades do Olho/genética , Fatores Reguladores de Interferon/genética , Deformidades Congênitas das Extremidades Inferiores/genética , Mutação , Sindactilia/genética , Anormalidades Urogenitais/genética , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Feminino , Dedos/anormalidades , Humanos , Articulação do Joelho/anormalidades , Lábio/anormalidades , Taxa de Mutação , Mutação de Sentido Incorreto , Domínios e Motivos de Interação entre Proteínas/genética
13.
Stem Cells Dev ; 21(7): 1134-44, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21793658

RESUMO

Parthenogenetic embryonic stem cells (P-ESCs) offer an alternative source of pluripotent cells, which hold great promise for autologous transplantation and regenerative medicine. P-ESCs have been successfully derived from blastocysts of several mammalian species. However, compared with biparental embryonic stem cells (B-ESCs), P-ESCs are limited in their ability to fully differentiate into all 3 germ layers. For example, it has been observed that there is a differentiation bias toward ectoderm derivatives at the expense of endoderm and mesoderm derivatives-muscle in particular-in chimeric embryos, teratomas, and embryoid bodies. In the present study we found that H19 expression was highly upregulated in P-ESCs with more than 6-fold overexpression compared with B-ESCs. Thus, we hypothesized that manipulation of the H19 gene in P-ESCs would alleviate their limitations and allow them to function like B-ESCs. To test this hypothesis we employed a small hairpin RNA approach to reduce the amount of H19 transcripts in mouse P-ESCs. We found that downregulation of H19 led to an increase of mesoderm-derived muscle and endoderm in P-ESCs teratomas similar to that observed in B-ESCs teratomas. This phenomenon coincided with upregulation of mesoderm-specific genes such as Myf5, Myf6, and MyoD. Moreover, H19 downregulated P-ESCs differentiated into a higher percentage of beating cardiomyocytes compared with control P-ESCs. Collectively, these results suggest that P-ESCs are amenable to molecular modifications that bring them functionally closer to true ESCs.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/fisiologia , Partenogênese , RNA não Traduzido/genética , Animais , Células Cultivadas , Ilhas de CpG/genética , Metilação de DNA , Regulação para Baixo , Ectoderma/metabolismo , Ectoderma/patologia , Corpos Embrioides/metabolismo , Corpos Embrioides/fisiologia , Células-Tronco Embrionárias/transplante , Endoderma/metabolismo , Endoderma/patologia , Endoderma/fisiologia , Feminino , Perfilação da Expressão Gênica , Genes Transgênicos Suicidas , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Fator de Crescimento Insulin-Like II/metabolismo , Cariótipo , Mesoderma/patologia , Mesoderma/fisiologia , Camundongos , Músculos/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , RNA Longo não Codificante , RNA não Traduzido/metabolismo , Teratoma/metabolismo , Teratoma/patologia
14.
Am J Hum Genet ; 90(1): 69-75, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22197488

RESUMO

Pterygium syndromes are complex congenital disorders that encompass several distinct clinical conditions characterized by multiple skin webs affecting the flexural surfaces often accompanied by craniofacial anomalies. In severe forms, such as in the autosomal-recessive Bartsocas-Papas syndrome, early lethality is common, complicating the identification of causative mutations. Using exome sequencing in a consanguineous family, we identified the homozygous mutation c.1127C>A in exon 7 of RIPK4 that resulted in the introduction of the nonsense mutation p.Ser376X into the encoded ankyrin repeat-containing kinase, a protein that is essential for keratinocyte differentiation. Subsequently, we identified a second mutation in exon 2 of RIPK4 (c.242T>A) that resulted in the missense variant p.Ile81Asn in the kinase domain of the protein. We have further demonstrated that RIPK4 is a direct transcriptional target of the protein p63, a master regulator of stratified epithelial development, which acts as a nodal point in the cascade of molecular events that prevent pterygium syndromes.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Exoma , Proteínas Serina-Treonina Quinases/genética , Pterígio/congênito , Sequência de Aminoácidos , Animais , Sequência de Bases , Criança , Fenda Labial/diagnóstico , Fissura Palatina/diagnóstico , Consanguinidade , Anormalidades Craniofaciais/genética , Éxons , Genes Recessivos , Loci Gênicos , Humanos , Queratinócitos/metabolismo , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , Fosfoproteínas/metabolismo , Pterígio/diagnóstico , Pterígio/genética , Índice de Gravidade de Doença , Anormalidades da Pele , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
15.
Am J Med Genet A ; 155A(6): 1314-21, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21574244

RESUMO

Genetic variation in the transcription factor interferon regulatory factor 6 (IRF6) causes and contributes risk for oral clefting disorders. We hypothesized that genes regulated by IRF6 are also involved in oral clefting disorders. We used five criteria to identify potential IRF6 target genes; differential gene expression in skin taken from wild-type and Irf6-deficient murine embryos, localization to the Van der Woude syndrome 2 (VWS2) locus at 1p36-1p32, overlapping expression with Irf6, presence of a conserved predicted-binding site in the promoter region, and a mutant murine phenotype that was similar to the Irf6 mutant mouse. Previously, we observed altered expression for 573 genes; 13 were located in the murine region syntenic to the VWS2 locus. Two of these genes, Wdr65 and Stratifin, met 4 of 5 criteria. Wdr65 was a novel gene that encoded a predicted protein of 1,250 amino acids with two WD domains. As potential targets for Irf6 regulation, we hypothesized that disease-causing mutations will be found in WDR65 and Stratifin in individuals with VWS or VWS-like syndromes. We identified a potentially etiologic missense mutation in WDR65 in a person with VWS who does not have an exonic mutation in IRF6. The expression and mutation data were consistent with the hypothesis that WDR65 was a novel gene involved in oral clefting.


Assuntos
Anormalidades Múltiplas/genética , Cromossomos Humanos Par 1/genética , Fenda Labial/genética , Fissura Palatina/genética , Cistos/genética , Regulação da Expressão Gênica/genética , Fatores Reguladores de Interferon/genética , Mutação de Sentido Incorreto/genética , Proteínas/genética , Animais , Sequência de Bases , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , Humanos , Hibridização In Situ , Lábio/anormalidades , Camundongos , Análise em Microsséries , Proteínas Associadas aos Microtúbulos , Dados de Sequência Molecular , Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
16.
J Craniofac Surg ; 21(5): 1350-3, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20856020

RESUMO

Van der Woude syndrome (VWS; OMIM 119300) is an autosomal-dominant condition associated with clefts of the lip and/or palate and lower lip pits and is caused by mutations in interferon regulatory factor 6 (IRF6). The standard of practice for children born with cleft lip/palate is surgical repair, which requires proper wound healing. We tested the hypothesis that children with VWS are more likely to have wound complications after cleft repair than children with nonsyndromic cleft lip/palate (NSCLP). Furthermore, we hypothesized that children with VWS have more surgical procedures. A retrospective, case-controlled study was performed. Seventeen children with VWS and 68 matched controls with NSCLP were scored for the presence of wound complications after cleft repair, for the severity of complications, and for number of surgeries from age 0 to 10. Of the 17 children with VWS, 8 had wound complications. Of 68 controls, 13 had wound complications (P = 0.02). Of 8 wound complications in the VWS group, 6 were major, whereas of 13 complications in the control group, 9 were major (P = 0.04). Most wound complications were fistulae and occurred in isolated cleft palate and bilateral cleft lip. The mean number of surgeries in the VWS group was 3.0 compared with 2.8 in the control group (P = 0.67). Our studies suggest that children with VWS have an increased risk for wound complications after cleft repair compared with children with NSCLP. Furthermore, these data support a role for IRF6 in wound healing.


Assuntos
Fenda Labial/cirurgia , Fissura Palatina/cirurgia , Complicações Pós-Operatórias/epidemiologia , Deiscência da Ferida Operatória/epidemiologia , Estudos de Casos e Controles , Pré-Escolar , Fenda Labial/genética , Fissura Palatina/genética , Feminino , Humanos , Lactente , Masculino , Complicações Pós-Operatórias/terapia , Estudos Retrospectivos , Deiscência da Ferida Operatória/terapia , Síndrome , Cicatrização
17.
Dev Growth Differ ; 51(5): 473-81, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19527266

RESUMO

Interferon regulatory factor 6 (IRF6) is a non-canonical member of the interferon regulatory factor family of transcription factors. We recently identified IRF6 as a novel Maspin-interacting protein in mammary epithelial cells. Maspin is a tumor suppressor in the breast and has also been implicated in mammary gland morphogenesis. To explore a possible role for IRF6 in conjunction with Maspin during mammary gland growth and differentiation, we examined the expression of IRF6 and Maspin during post-utero mammary gland development using a combination of in vitro and in vivo approaches. The data revealed that the expression of IRF6 and Maspin is temporally and spatially regulated throughout mammary gland development, with maximal expression of both proteins occurring in fully differentiated, lactating lobuloalveolar cells. We further show that IRF6 adopts a lumenal localization pattern following complete epithelial cell polarization and present new evidence for the secretion of IRF6 into the milk. These results support the hypothesis that IRF6 and Maspin are important for mammary epithelial cell differentiation, and advance our understanding of the Maspin-IRF6 partnership during normal mammary gland development.


Assuntos
Fatores Reguladores de Interferon/metabolismo , Serpinas/metabolismo , Animais , Western Blotting , Técnicas de Cultura de Células , Linhagem Celular , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Glândulas Mamárias Humanas/metabolismo , Camundongos
18.
J Biol Chem ; 280(40): 34210-7, 2005 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-16049006

RESUMO

Since its reported discovery in 1994, maspin (mammary serine protease inhibitor) has been characterized as a class II tumor suppressor by its ability to promote apoptosis and inhibit cell invasion. Maspin is highly expressed in normal mammary epithelial cells but reduced or absent in aggressive breast carcinomas. However, despite efforts to characterize the mechanism(s) by which maspin functions as a tumor suppressor, its molecular characterization has remained somewhat elusive. Therefore, in an attempt to identify maspin-interacting proteins and thereby gain insight into the functional pathways of maspin, we employed a maspin-baited yeast two-hybrid system and subsequently identified Interferon Regulatory Factor 6 (IRF6) as a maspin-binding protein. IRF6 belongs to the IRF family of transcription factors, which is best known for its regulation of interferon and interferon-inducible genes following a pathogenic stimulus. Although many of the IRF family members have been well characterized, IRF6 remains poorly understood. We report that IRF6 is expressed in normal mammary epithelial cells and that it directly associates with maspin in a yeast two-hybrid system and in vitro. The interaction occurs via the conserved IRF protein association domain and is regulated by phosphorylation of IRF6. We have shown that, similar to maspin, IRF6 expression is inversely correlated with breast cancer invasiveness. We further demonstrated that the transient re-expression of IRF6 in breast cancer cells results in an increase of N-cadherin and a redistribution of vimentin commensurate with changes in cell morphology, suggestive of an epithelial-to-mesenchymal transition event. Concomitantly, we showed that maspin acts as a negative regulator of this process. These findings help to elucidate the molecular mechanisms of maspin and suggest an interactive role between maspin and IRF6 in regulating cellular phenotype, the loss of which can lead to neoplastic transformation.


Assuntos
Neoplasias da Mama/patologia , Mama/fisiologia , Genes Supressores de Tumor/fisiologia , Fatores Reguladores de Interferon/metabolismo , Inibidores de Serina Proteinase/fisiologia , Serpinas/fisiologia , Sequência de Aminoácidos , Mama/citologia , Caderinas/biossíntese , Transformação Celular Neoplásica , Células Epiteliais/fisiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Fatores Reguladores de Interferon/biossíntese , Dados de Sequência Molecular , Fenótipo , Fosforilação , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas , Técnicas do Sistema de Duplo-Híbrido , Vimentina/metabolismo , Leveduras/genética
19.
J Mol Cell Cardiol ; 37(1): 33-41, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15242733

RESUMO

Glutamate is the only amino acid extracted by healthy myocardium in net amounts, with uptake further increased during hypoxic or ischemic conditions. Glutamate supplementation provides cardioprotection from hypoxic and reperfusion injury through several metabolic pathways that depend upon adequate transport of glutamate into the mitochondria. Glutamate transport across the inner mitochondrial membrane is a key component of the malate/aspartate shuttle. Glutamate transport in the brain has been well characterized since the discovery of the excitatory amino acid transporter (EAAT) family. We hypothesize that a protein similar to EAAT1 found in brain may function as a glutamate transporter in cardiac mitochondria. Rat heart total RNA was screened by reverse transcriptase-polymerase chain reaction with an array of primer pairs derived from the rat brain EAAT1 cDNA sequence, yielding a 3786-bp cDNA comprising a 1638-bp open reading frame identical to rat brain EAAT1 with flanking 5'- and 3'-untranslated regions. Northern blot analysis confirmed a 4-kb mRNA product in rat heart and brain, with greater abundance in brain. A protein of the predicted approximate 60-kD size was recognized in myocardial lysates by an anti-EAAT1 polyclonal antibody produced against an amino-terminal peptide from human EAAT1. The protein enriched in rat heart mitochondria by immunoblot, co-localized with the mitochondrial protein cytochrome c by immunohistochemistry, and further localized to the inner mitochondrial membrane upon digitonin fractionation of the mitochondria. In myocytes overexpressing EAAT1, activity of the malate/aspartate shuttle increased by 33% compared to non-transfected cells (P = 0.004). These data indicate that EAAT1 is expressed in myocardial mitochondria, and functions in the malate/aspartate shuttle, suggesting a role for EAAT1 in myocardial glutamate metabolism.


Assuntos
Encéfalo/patologia , Transportador 1 de Aminoácido Excitatório/biossíntese , Transportador 1 de Aminoácido Excitatório/fisiologia , Mitocôndrias Cardíacas/metabolismo , Adenoviridae/genética , Animais , Ácido Aspártico/metabolismo , Northern Blotting , Encéfalo/metabolismo , Células Cultivadas , Corantes/farmacologia , Citocromos c/metabolismo , DNA Complementar/metabolismo , Digitonina/farmacologia , Vetores Genéticos , Ácido Glutâmico/uso terapêutico , Hipóxia , Immunoblotting , Imuno-Histoquímica , Malatos/metabolismo , Microscopia de Fluorescência , Mitocôndrias/patologia , Miocárdio/patologia , Fases de Leitura Aberta , RNA/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos WKY , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares , Sais de Tetrazólio/farmacologia , Tiazóis/farmacologia , Transfecção
20.
Proc Natl Acad Sci U S A ; 99(4): 2129-33, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11854508

RESUMO

The innate immune system includes antimicrobial peptides that protect multicellular organisms from a diverse spectrum of microorganisms. beta-Defensins comprise one important family of mammalian antimicrobial peptides. The annotation of the human genome fails to reveal the expected diversity, and a recent query of the draft sequence with the blast search engine found only one new beta-defensin gene (DEFB3). To define better the beta-defensin gene family, we adopted a genomics approach that uses hmmer, a computational search tool based on hidden Markov models, in combination with blast. This strategy identified 28 new human and 43 new mouse beta-defensin genes in five syntenic chromosomal regions. Within each syntenic cluster, the gene sequences and organization were similar, suggesting each cluster pair arose from a common ancestor and was retained because of conserved functions. Preliminary analysis indicates that at least 26 of the predicted genes are transcribed. These results demonstrate the value of a genomewide search strategy to identify genes with conserved structural motifs. Discovery of these genes represents a new starting point for exploring the role of beta-defensins in innate immunity.


Assuntos
beta-Defensinas/química , beta-Defensinas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Computadores , Sequência Conservada , Mapeamento de Sequências Contíguas , Cisteína/química , Éxons , Humanos , Cadeias de Markov , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Filogenia , Homologia de Sequência de Aminoácidos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA