Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur Respir J ; 62(1)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37080568

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19)-induced mortality occurs predominantly in older patients. Several immunomodulating therapies seem less beneficial in these patients. The biological substrate behind these observations is unknown. The aim of this study was to obtain insight into the association between ageing, the host response and mortality in patients with COVID-19. METHODS: We determined 43 biomarkers reflective of alterations in four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, and cytokine and chemokine release. We used mediation analysis to associate ageing-driven alterations in the host response with 30-day mortality. Biomarkers associated with both ageing and mortality were validated in an intensive care unit and external cohort. RESULTS: 464 general ward patients with COVID-19 were stratified according to age decades. Increasing age was an independent risk factor for 30-day mortality. Ageing was associated with alterations in each of the host response domains, characterised by greater activation of the endothelium and coagulation system and stronger elevation of inflammation and organ damage markers, which was independent of an increase in age-related comorbidities. Soluble tumour necrosis factor receptor 1, soluble triggering receptor expressed on myeloid cells 1 and soluble thrombomodulin showed the strongest correlation with ageing and explained part of the ageing-driven increase in 30-day mortality (proportion mediated: 13.0%, 12.9% and 12.6%, respectively). CONCLUSIONS: Ageing is associated with a strong and broad modification of the host response to COVID-19, and specific immune changes likely contribute to increased mortality in older patients. These results may provide insight into potential age-specific immunomodulatory targets in COVID-19.


Assuntos
COVID-19 , Humanos , Idoso , Biomarcadores , Inflamação , Citocinas , Envelhecimento
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166519, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964875

RESUMO

BACKGROUND: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. OBJECTIVE: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. METHODS: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1ß and IL-10. RESULTS: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1ß and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. CONCLUSION: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.


Assuntos
Monócitos , Pneumonia , Citocinas/metabolismo , Humanos , Interleucina-10/metabolismo , Espaço Intracelular , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Pneumonia/metabolismo , Piruvato Quinase/metabolismo , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos , Fator de Necrose Tumoral alfa/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166488, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835414

RESUMO

Most macrophages generate energy to mount an inflammatory cytokine response by increased glucose metabolism through intracellular glycolysis. Previous studies have suggested that alveolar macrophages (AMs), which reside in a glucose-poor natural environment, are less capable to utilize glycolysis and instead rely on other substrates to fuel oxidative phosphorylation (OXPHOS) for energy supply. At present, it is not known whether AMs are capable to use glucose metabolism to produce cytokines when other metabolic options are blocked. Here, we studied human AMs retrieved by bronchoalveolar lavage from healthy subjects, and examined their glucose metabolism in response to activation by the gram-negative bacterial component lipopolysaccharide (LPS) ex vivo. The immunological and metabolic responses of AMs were compared to those of cultured blood monocyte-derived macrophages (MDMs) from the same subjects. LPS stimulation enhanced cytokine release by both AMs and MDMs, which was associated with increased lactate release by MDMs (reflecting glycolysis), but not by AMs. In agreement, LPS induced higher mRNA expression of multiple glycolytic regulators in MDMs, but not in AMs. Flux analyses of [13C]-glucose revealed no differences in [13C]-incorporation in glucose metabolism intermediates in AMs. Inhibition of OXPHOS by oligomycin strongly reduced LPS-induced cytokine production by AMs, but not by MDMs. Collectively, these results indicate that human AMs, in contrast to MDMs, do not use glucose metabolism during LPS-induced activation and fully rely on OXPHOS for cytokine production.


Assuntos
Lipopolissacarídeos , Macrófagos Alveolares , Citocinas/metabolismo , Glucose/metabolismo , Humanos , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo
4.
JHEP Rep ; 3(6): 100385, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34816110

RESUMO

BACKGROUND & AIMS: Immunoglobulin G4-related disease (IgG4-RD) of the biliary tract and pancreas is a fibroinflammatory disease of unknown origin with striking male predominance. We aimed to investigate whether blue-collar work and occupational contaminant exposure are risk factors for IgG4-RD of the biliary tract and pancreas. METHOD: We performed an age-/sex-matched case-control study in the largest academic medical centers of the Netherlands. Occupational history was surveyed by questionnaires. The International Standard Classification of Occupations (ISCO88) was used to classify jobs. Job exposure matrices ALOHA and DOM were utilized to assess the years individuals were exposed to compounds. The disease control cohort consisted of patients from 6 equally sized groups. Conditional logistic regression was used to assess effects of blue-collar work and exposure to occupational contaminants on developing IgG4-RD of the biliary tract and pancreas. RESULTS: Overall, 101 patients with IgG4-RD of the biliary tract and pancreas were matched 1:3 to 303 controls. Patients with IgG4-RD had a lower level of education (p = 0.001). Individuals who at least once performed blue-collar work (>1 year), had higher odds of developing IgG4-RD than individuals that only performed white-collar work (odds ratio [OR] 3.66; CI 2.18-6.13; p <0.0001). Being ever exposed (>1 year) to industrial ALOHA (e.g. mineral dust; vapors-dust-gases-fumes) and DOM compounds (e.g. asbestos) resulted in higher odds of IgG4-RD (OR 2.14; 95% CI 1.26-3.16; p <0.001 and OR 2.95; 95% CI 1.78-4.90; p <0.001, respectively). CONCLUSION: Blue-collar work is a risk factor for developing IgG4-RD of the biliary tract and pancreas putatively driven by exposure to selected industrial compounds; this may explain the striking male predominance among patients. LAY SUMMARY: Immunoglobulin G4-related disease (IgG4-RD) causes tumor-like lesions and typically affects middle-aged to elderly men. The background and cause of this disease remain relatively unknown. In this study, we identified blue-collar work as a risk factor for developing IgG4-RD of the biliary tract and pancreas, which may explain the striking male predominance among patients. Furthermore, these results suggest that toxic exposure to occupational contaminants may drive autoimmunity in IgG4-RD of the biliary tract and pancreas.

5.
EBioMedicine ; 67: 103378, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34000622

RESUMO

BACKGROUND: Mortality rates are high among hospitalized patients with COVID-19, especially in those intubated on the ICU. Insight in pathways associated with unfavourable outcome may lead to new treatment strategies. METHODS: We performed a prospective cohort study of patients with COVID-19 admitted to general ward or ICU who underwent serial blood sampling. To provide insight in the pathways involved in disease progression, associations were estimated between outcome risk and serial measurements of 64 biomarkers in potential important pathways of COVID-19 infection (inflammation, tissue damage, complement system, coagulation and fibrinolysis) using joint models combining Cox regression and linear mixed-effects models. For patients admitted to the general ward, the primary outcome was admission to the ICU or mortality (unfavourable outcome). For patients admitted to the ICU, the primary outcome was 12-week mortality. FINDINGS: A total of 219 patients were included: 136 (62%) on the ward and 119 patients (54%) on the ICU; 36 patients (26%) were included in both cohorts because they were transferred from general ward to ICU. On the general ward, 54 of 136 patients (40%) had an unfavourable outcome and 31 (23%) patients died. On the ICU, 54 out of 119 patients (45%) died. Unfavourable outcome on the general ward was associated with changes in concentrations of IL-6, IL-8, IL-10, soluble Receptor for Advanced Glycation End Products (sRAGE), vascular cell adhesion molecule 1 (VCAM-1) and Pentraxin-3. Death on the ICU was associated with changes in IL-6, IL-8, IL-10, sRAGE, VCAM-1, Pentraxin-3, urokinase-type plasminogen activator receptor, IL-1-receptor antagonist, CD14, procalcitonin, tumor necrosis factor alfa, tissue factor, complement component 5a, Growth arrest-specific 6, angiopoietin 2, and lactoferrin. Pathway analysis showed that unfavourable outcome on the ward was mainly driven by chemotaxis and interleukin production, whereas death on ICU was associated with a variety of pathways including chemotaxis, cell-cell adhesion, innate host response mechanisms, including the complement system, viral life cycle regulation, angiogenesis, wound healing and response to corticosteroids. INTERPRETATION: Clinical deterioration in patients with severe COVID-19 involves multiple pathways, including chemotaxis and interleukin production, but also endothelial dysfunction, the complement system, and immunothrombosis. Prognostic markers showed considerable overlap between general ward and ICU patients, but we identified distinct differences between groups that should be considered in the development and timing of interventional therapies in COVID-19. FUNDING: Amsterdam UMC, Amsterdam UMC Corona Fund, and Dr. C.J. Vaillant Fonds.


Assuntos
Biomarcadores/sangue , COVID-19/mortalidade , Admissão do Paciente/estatística & dados numéricos , Idoso , COVID-19/sangue , Quimiotaxia , Feminino , Humanos , Unidades de Terapia Intensiva , Interleucinas/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos
6.
Crit Care Med ; 49(11): 1901-1911, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33935163

RESUMO

OBJECTIVES: Plasma ferritin levels above 4,420 ng/mL have been proposed as a diagnostic marker for macrophage activation-like syndrome in sepsis and used for selection of sepsis patients for anti-inflammatory therapy. We here sought to determine the frequency, presentation, outcome, and host response aberrations of macrophage activation-like syndrome, as defined by admission ferritin levels above 4,420 ng/mL, in critically ill patients with community-acquired pneumonia. DESIGN: A prospective observational cohort study. SETTING: ICUs in two tertiary hospitals in the Netherlands. PATIENTS: One hundred fifty-three patients admitted with community-acquired pneumonia. MEASUREMENTS AND MAIN RESULTS: Patients were stratified in community-acquired pneumonia-macrophage activation-like syndrome (n = 15; 9.8%) and community-acquired pneumonia-control groups (n = 138; 90.2%) based on an admission plasma ferritin level above or below 4,420 ng/mL, respectively. Community-acquired pneumonia-macrophage activation-like syndrome patients presented with a higher disease severity and had a higher ICU mortality (46.7% vs 12.3% in community-acquired pneumonia-controls; p = 0.002). Twenty-three plasma biomarkers indicative of dysregulation of key host response pathways implicated in sepsis pathogenesis (systemic inflammation, cytokine responses, endothelial cell activation, and barrier function, coagulation activation) were more disturbed in community-acquired pneumonia-macrophage activation-like syndrome patients. Hematologic malignancies were overrepresented in community-acquired pneumonia-macrophage activation-like syndrome patients (33.3% vs 5.1% in community-acquired pneumonia-controls; p = 0.001). In a subgroup analysis excluding patients with hematologic malignancies (n = 141), differences in mortality were not present anymore, but the exaggerated host response abnormalities in community-acquired pneumonia-macrophage activation-like syndrome patients remained. CONCLUSIONS: Macrophage activation-like syndrome in critically ill patients with community-acquired pneumonia occurs more often in patients with hematologic malignancies and is associated with deregulation of multiple host response pathways.


Assuntos
Infecções Comunitárias Adquiridas/sangue , Estado Terminal/terapia , Ferritinas/sangue , Ativação de Macrófagos , Pneumonia Bacteriana/sangue , Idoso , Biomarcadores/sangue , Estudos de Coortes , Infecções Comunitárias Adquiridas/terapia , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Países Baixos , Pneumonia Bacteriana/terapia , Estudos Prospectivos , Índice de Gravidade de Doença
7.
Thorax ; 76(10): 1010-1019, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33846275

RESUMO

BACKGROUND: Knowledge of the pathophysiology of COVID-19 is almost exclusively derived from studies that examined the immune response in blood. We here aimed to analyse the pulmonary immune response during severe COVID-19 and to compare this with blood responses. METHODS: This was an observational study in patients with COVID-19 admitted to the intensive care unit (ICU). Mononuclear cells were purified from bronchoalveolar lavage fluid (BALF) and blood, and analysed by spectral flow cytometry; inflammatory mediators were measured in BALF and plasma. FINDINGS: Paired blood and BALF samples were obtained from 17 patients, four of whom died in the ICU. Macrophages and T cells were the most abundant cells in BALF, with a high percentage of T cells expressing the ƴδ T cell receptor. In the lungs, both CD4 and CD8 T cells were predominantly effector memory cells (87·3% and 83·8%, respectively), and these cells expressed higher levels of the exhaustion marker programmad death-1 than in peripheral blood. Prolonged ICU stay (>14 days) was associated with a reduced proportion of activated T cells in peripheral blood and even more so in BALF. T cell activation in blood, but not in BALF, was higher in fatal COVID-19 cases. Increased levels of inflammatory mediators were more pronounced in BALF than in plasma. INTERPRETATION: The bronchoalveolar immune response in COVID-19 has a unique local profile that strongly differs from the immune profile in peripheral blood. Fully elucidating COVID-19 pathophysiology will require investigation of the pulmonary immune response.


Assuntos
COVID-19/imunologia , Imunidade Celular/fisiologia , Mediadores da Inflamação/metabolismo , Idoso , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , COVID-19/sangue , COVID-19/patologia , Cuidados Críticos , Estado Terminal , Feminino , Citometria de Fluxo , Humanos , Macrófagos/fisiologia , Masculino , Pessoa de Meia-Idade , Linfócitos T/fisiologia
8.
Gut ; 67(4): 728-735, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28765476

RESUMO

OBJECTIVE: Immunoglobulin G4-related disease (IgG4-RD) is a multiorgan immune-mediated disease that predominantly affects the biliary tract (IgG4-associated cholangitis, IAC) and pancreas (autoimmune pancreatitis, AIP). We recently identified highly expanded IgG4+ B-cell receptor clones in blood and affected tissues of patients with IAC/AIP suggestive of specific (auto)antigenic stimuli involved in initiating and/or maintaining the inflammatory response. This study aimed to identify (auto)antigen(s) that are responsible for the clonal expansion of IgG4+ B cells in IgG4-RD. DESIGN: We screened sera of patients with IAC/AIP (n=50), in comparison to control sera of patients with primary sclerosing cholangitis (PSC) and pancreatobiliary malignancies (n=47), for reactivity against human H69 cholangiocyte lysates on immunoblot. Subsequently, target antigens were immunoprecipitated and analysed by mass spectrometry. RESULTS: Prominent reactivity against a 56 kDa protein was detected in human H69 cholangiocyte lysates exposed to sera of nine patients with IAC/AIP. Affinity purification and mass spectrometry analysis identified annexin A11, a calcium-dependent phospholipid-binding protein. Annexin A11-specific IgG4 and IgG1 antibodies were only detected in serum of patients with IgG4-RD of the biliary tract/pancreas/salivary glands and not in disease mimickers with PSC and pancreatobiliary malignancies. Epitope analysis showed that two annexin A11 epitopes targeted by IgG1 and IgG4 autoantibodies were shared between patients with IAC/AIP and IgG4 antibodies blocked binding of IgG1 antibodies to the shared annexin A11 epitopes. CONCLUSION: Our data suggest that IgG1-mediated pro-inflammatory autoreactivity against annexin A11 in patients with IgG4-RD may be attenuated by formation of annexin A11-specific IgG4 antibodies supporting an anti-inflammatory role of IgG4 in IgG4-RD.


Assuntos
Anexinas/imunologia , Autoanticorpos/imunologia , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/imunologia , Imunoglobulina G/imunologia , Fatores Imunológicos/imunologia , Centros Médicos Acadêmicos , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes/sangue , Biomarcadores/sangue , Estudos de Casos e Controles , Colangite/diagnóstico , Colangite/imunologia , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Países Baixos , Pancreatite/diagnóstico , Pancreatite/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA