Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Drug Alcohol Depend ; 230: 109185, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861493

RESUMO

BACKGROUND: Nicotine and illicit stimulants are very addictive substances. Although associations between grey matter and dependence on stimulants have been frequently reported, white matter correlates have received less attention. METHODS: Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from individuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various machine learning algorithms in deriving brain-based classifications on stimulant dependence. RESULTS: The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine (AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence proved modest (AUC = 0.62, p = 0.014). CONCLUSIONS: Stimulant dependence was related to FA disturbances within tracts consistent with a role in addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with stimulant dependence, particularly for cocaine and methamphetamine.


Assuntos
Cocaína , Metanfetamina , Substância Branca , Imagem de Tensor de Difusão , Humanos , Metanfetamina/efeitos adversos , Nicotina , Substância Branca/diagnóstico por imagem
2.
Addict Biol ; 26(5): e13010, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33508888

RESUMO

Brain asymmetry reflects left-right hemispheric differentiation, which is a quantitative brain phenotype that develops with age and can vary with psychiatric diagnoses. Previous studies have shown that substance dependence is associated with altered brain structure and function. However, it is unknown whether structural brain asymmetries are different in individuals with substance dependence compared with nondependent participants. Here, a mega-analysis was performed using a collection of 22 structural brain MRI datasets from the ENIGMA Addiction Working Group. Structural asymmetries of cortical and subcortical regions were compared between individuals who were dependent on alcohol, nicotine, cocaine, methamphetamine, or cannabis (n = 1,796) and nondependent participants (n = 996). Substance-general and substance-specific effects on structural asymmetry were examined using separate models. We found that substance dependence was significantly associated with differences in volume asymmetry of the nucleus accumbens (NAcc; less rightward; Cohen's d = 0.15). This effect was driven by differences from controls in individuals with alcohol dependence (less rightward; Cohen's d = 0.10) and nicotine dependence (less rightward; Cohen's d = 0.11). These findings suggest that disrupted structural asymmetry in the NAcc may be a characteristic of substance dependence.


Assuntos
Córtex Cerebelar/patologia , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Adulto , Alcoolismo/diagnóstico por imagem , Comportamento Aditivo/diagnóstico por imagem , Encéfalo/patologia , Espessura Cortical do Cérebro , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Núcleo Accumbens/patologia , Tabagismo/diagnóstico por imagem , Adulto Jovem
3.
J Med Microbiol ; 70(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33170120

RESUMO

Introduction. Infections with the respiratory pathogen Mycoplasma pneumoniae are often chronic, recurrent and resistant, persisting after antibiotic treatment. M. pneumoniae grown on glass forms protective biofilms, consistent with a role for biofilms in persistence. These biofilms consist of towers of bacteria interspersed with individual adherent cells.Hypothesis/Gap Statement. A tissue culture model for M. pneumoniae biofilms has not been described or evaluated to address whether growth, development and resistance properties are consistent with persistence in the host. Moreover, it is unclear whether the M. pneumoniae cells in the biofilm towers and individual bacterial cells have distinct roles in disease.Aim. We evaluated the properties of biofilms of M. pneumoniae grown on the immortalized human bronchial epithelial cell line BEAS-2B in relation to persistence in the host. We observed nucleation of biofilm towers and the disposition of individual cells in culture, leading to a model of how tower and individual cells contribute to infection and disease.Methodology. With submerged BEAS-2B cells as a substrate, we evaluated growth and development of M. pneumoniae biofilms using scanning electron microscopy and confocal laser scanning microscopy. We characterized resistance to erythromycin and complement using minimum inhibitory concentration assays and quantification of colony forming units. We monitored biofilm tower formation using time-lapse microscopic analysis of host-cell-free M. pneumoniae cultures.Results. Bacteria grown on host cells underwent similar development to those grown without host cells, including tower formation, rounding and incidence of individual cells outside towers. Erythromycin and complement significantly reduced growth of M. pneumoniae. Towers formed exclusively from pre-existing aggregates of bacteria. We discuss a model of the M. pneumoniae biofilm life cycle in which protective towers derive from pre-existing aggregates, and generate individual cytotoxic cells.Conclusion . M. pneumoniae can form protective biofilms in a tissue culture model, implicating biofilms in chronic infections, with aggregates of M. pneumoniae cells being important for establishing infections.


Assuntos
Biofilmes , Brônquios/microbiologia , Mycoplasma pneumoniae/fisiologia , Pneumonia por Mycoplasma/microbiologia , Antibacterianos/farmacologia , Brônquios/ultraestrutura , Linhagem Celular , Células Epiteliais/microbiologia , Células Epiteliais/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura , Mycoplasma pneumoniae/efeitos dos fármacos , Mycoplasma pneumoniae/genética , Mycoplasma pneumoniae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA