RESUMO
Epstein-Barr virus (EBV) infection has long been associated with the development of multiple sclerosis (MS). MS patients have elevated titers of EBV-specific antibodies in serum and show signs of CNS damage only after EBV infection. Regarding CD8+ T-cells, an elevated but ineffective response to EBV was suggested in MS patients, who present with a broader MHC-I-restricted EBV-specific T-cell receptor beta chain (TRB) repertoire compared to controls. It is not known whether this altered EBV response could be subject to dynamic changes, e.g., by approved MS therapies, and whether it is specific for MS. 1317 peripheral blood TRB repertoire samples of healthy donors (n=409), patients with MS (n=710) before and after treatment, patients with neuromyelitis optica spectrum disorder (n=87), myelin-oligodendrocyte-glycoprotein antibody-associated disease (n=64) and Susac's syndrome (n=47) were analyzed. Apart from MS, none of the evaluated diseases presented with a broader anti-EBV TRB repertoire. In MS patients undergoing autologous hematopoietic stem-cell transplantation, EBV reactivation coincided with elevated MHC-I-restricted EBV-specific TRB sequence matches. Therapy with ocrelizumab, teriflunomide or dimethyl fumarate reduced EBV-specific, but not CMV-specific MHC-I-restricted TRB sequence matches. Together, this data suggests that the aberrant MHC-I-restricted T-cell response directed against EBV is specific to MS with regard to NMO, MOGAD and Susac's Syndrome and that it is specifically modified by MS treatments interfering with EBV host cells or activated lymphocytes.
RESUMO
Progressive multifocal leukoencephalopathy (PML) has been associated with different forms of immune compromise. This study analyzes the chemokine signals and attracted immune cells in cerebrospinal fluid (CSF) during PML to define immune cell subpopulations relevant for the PML immune response. In addition to chemokines that indicate a general state of inflammation, like CCL5 and CXCL10, the CSF of PML patients specifically contains CCL2 and CCL4. Single-cell transcriptomics of CSF cells suggests an enrichment of distinct CD4+ and CD8+ T cells expressing chemokine receptors CCR2, CCR5, and CXCR3, in addition to ITGA4 and the genetic PML risk genes STXBP2 and LY9. This suggests that specific immune cell subpopulations migrate into the central nervous system to mitigate PML, and their absence might coincide with PML development. Monitoring them might hold clues for PML risk, and boosting their recruitment or function before therapeutic immune reconstitution might improve its risk-benefit ratio.
Assuntos
Movimento Celular , Sistema Nervoso Central , Quimiocinas , Leucoencefalopatia Multifocal Progressiva , Humanos , Leucoencefalopatia Multifocal Progressiva/patologia , Leucoencefalopatia Multifocal Progressiva/imunologia , Quimiocinas/metabolismo , Quimiocinas/genética , Movimento Celular/genética , Sistema Nervoso Central/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/imunologia , Linfócitos T CD8-Positivos/imunologia , Masculino , Feminino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Pessoa de Meia-Idade , IdosoRESUMO
Epstein-Barr virus (EBV) infection precedes multiple sclerosis (MS) pathology and cross-reactive antibodies might link EBV infection to CNS autoimmunity. As an altered anti-EBV T cell reaction was suggested in MS, we queried peripheral blood T cell receptor ß chain (TCRß) repertoires of 1,395 MS patients, 887 controls, and 35 monozygotic, MS-discordant twin pairs for multimer-confirmed, viral antigen-specific TCRß sequences. We detected more MHC-I-restricted EBV-specific TCRß sequences in MS patients. Differences in genetics or upbringing could be excluded by validation in monozygotic twin pairs discordant for MS. Anti-VLA-4 treatment amplified this observation, while interferon ß- or anti-CD20 treatment did not modulate EBV-specific T cell occurrence. In healthy individuals, EBV-specific CD8+ T cells were of an effector-memory phenotype in peripheral blood and cerebrospinal fluid. In MS patients, cerebrospinal fluid also contained EBV-specific central-memory CD8+ T cells, suggesting recent priming. Therefore, MS is not only preceded by EBV infection, but also associated with broader EBV-specific TCR repertoires, consistent with an ongoing anti-EBV immune reaction in MS.
Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Linfócitos T CD8-Positivos , Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta/genéticaRESUMO
Alemtuzumab is a monoclonal antibody that causes rapid depletion of CD52-expressing immune cells. It has proven to be highly efficacious in active relapsing-remitting multiple sclerosis; however, the high risk of secondary autoimmune disorders has greatly complicated its use. Thus, deeper insight into the pathophysiology of secondary autoimmunity and potential biomarkers is urgently needed. The most critical time points in the decision-making process for alemtuzumab therapy are before or at Month 12, where the ability to identify secondary autoimmunity risk would be instrumental. Therefore, we investigated components of blood and CSF of up to 106 multiple sclerosis patients before and after alemtuzumab treatment focusing on those critical time points. Consistent with previous reports, deep flow cytometric immune-cell profiling (n = 30) demonstrated major effects on adaptive rather than innate immunity, which favoured regulatory immune cell subsets within the repopulation. The longitudinally studied CSF compartment (n = 18) mainly mirrored the immunological effects observed in the periphery. Alemtuzumab-induced changes including increased numbers of naïve CD4+ T cells and B cells as well as a clonal renewal of CD4+ T- and B-cell repertoires were partly reminiscent of haematopoietic stem cell transplantation; in contrast, thymopoiesis was reduced and clonal renewal of T-cell repertoires after alemtuzumab was incomplete. Stratification for secondary autoimmunity did not show clear immununological cellular or proteomic traits or signatures associated with secondary autoimmunity. However, a restricted T-cell repertoire with hyperexpanded T-cell clones at baseline, which persisted and demonstrated further expansion at Month 12 by homeostatic proliferation, identified patients developing secondary autoimmune disorders (n = 7 without secondary autoimmunity versus n = 5 with secondary autoimmunity). Those processes were followed by an expansion of memory B-cell clones irrespective of persistence, which we detected shortly after the diagnosis of secondary autoimmune disease. In conclusion, our data demonstrate that (i) peripheral immunological alterations following alemtuzumab are mirrored by longitudinal changes in the CSF; (ii) incomplete T-cell repertoire renewal and reduced thymopoiesis contribute to a proautoimmune state after alemtuzumab; (iii) proteomics and surface immunological phenotyping do not identify patients at risk for secondary autoimmune disorders; (iv) homeostatic proliferation with disparate dynamics of clonal T- and B-cell expansions are associated with secondary autoimmunity; and (v) hyperexpanded T-cell clones at baseline and Month 12 may be used as a biomarker for the risk of alemtuzumab-induced autoimmunity.
Assuntos
Doenças Autoimunes , Autoimunidade , Alemtuzumab/efeitos adversos , Doenças Autoimunes/induzido quimicamente , Humanos , Fenótipo , ProteômicaRESUMO
Background: Progressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML. Methods: We hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years). Results: The four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7-20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Conclusion: For the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.
RESUMO
It is increasingly clear that an extraordinarily diverse range of clinically important conditions-including infections, vaccinations, autoimmune diseases, transplants, transfusion reactions, aging, and cancers-leave telltale signatures in the millions of V(D)J-rearranged antibody and T cell receptor [TR per the Human Genome Organization (HUGO) nomenclature but more commonly known as TCR] genes collectively expressed by a person's B cells (antibodies) and T cells. We refer to these as the immunome. Because of its diversity and complexity, the immunome provides singular opportunities for advancing personalized medicine by serving as the substrate for a highly multiplexed, near-universal blood test. Here we discuss some of these opportunities, the current state of immunome-based diagnostics, and highlight some of the challenges involved. We conclude with a call to clinicians, researchers, and others to join efforts with the Adaptive Immune Receptor Repertoire Community (AIRR-C) to realize the diagnostic potential of the immunome.
Assuntos
Imunidade Adaptativa , Testes Hematológicos , Receptores de Antígenos de Linfócitos T/imunologia , Testes Hematológicos/tendências , Sequenciamento de Nucleotídeos em Larga Escala , HumanosRESUMO
Multiple sclerosis (MS) disease risk is associated with reduced sun-exposure. This study assessed the relationship between measures of sun exposure (vitamin D [vitD], latitude) and MS severity in the setting of two multicenter cohort studies (nNationMS = 946, nBIONAT = 990). Additionally, effect-modification by medication and photosensitivity-associated MC1R variants was assessed. High serum vitD was associated with a reduced MS severity score (MSSS), reduced risk for relapses, and lower disability accumulation over time. Low latitude was associated with higher vitD, lower MSSS, fewer gadolinium-enhancing lesions, and lower disability accumulation. The association of latitude with disability was lacking in IFN-ß-treated patients. In carriers of MC1R:rs1805008(T), who reported increased sensitivity toward sunlight, lower latitude was associated with higher MRI activity, whereas for noncarriers there was less MRI activity at lower latitudes. In a further exploratory approach, the effect of ultraviolet (UV)-phototherapy on the transcriptome of immune cells of MS patients was assessed using samples from an earlier study. Phototherapy induced a vitD and type I IFN signature that was most apparent in monocytes but that could also be detected in B and T cells. In summary, our study suggests beneficial effects of sun exposure on established MS, as demonstrated by a correlative network between the three factors: Latitude, vitD, and disease severity. However, sun exposure might be detrimental for photosensitive patients. Furthermore, a direct induction of type I IFNs through sun exposure could be another mechanism of UV-mediated immune-modulation in MS.
Assuntos
Monócitos/efeitos da radiação , Esclerose Múltipla/sangue , Esclerose Múltipla/imunologia , Receptor Tipo 1 de Melanocortina/genética , Transcriptoma/efeitos da radiação , Vitamina D/sangue , Linfócitos B/efeitos da radiação , Estudos de Coortes , Feminino , Variação Genética , Genótipo , Humanos , Interferon beta/farmacologia , Interferon beta/uso terapêutico , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Esclerose Múltipla/patologia , Esclerose Múltipla/radioterapia , Fenótipo , Fototerapia , Recidiva , Índice de Gravidade de Doença , Luz Solar , Linfócitos T/metabolismo , Linfócitos T/efeitos da radiação , Transcriptoma/genéticaRESUMO
BACKGROUND: Progressive multifocal leukoencephalopathy (PML) can in rare cases occur in natalizumab-treated patients with high serum anti-JCPyV antibodies, hypothetically due to excessive blockade of immune cell migration. OBJECTIVE: Immune cell recruitment to the central nervous system (CNS) was assessed in relapsing-remitting multiple sclerosis (RRMS) patients stratified by low versus high anti-JCPyV antibody titers as indicator for PML risk. METHODS: Cerebrospinal fluid (CSF) cell counts of 145 RRMS patients were quantified by flow cytometry. Generalized linear models were employed to assess influence of age, sex, disease duration, Expanded Disability Status Scale (EDSS), clinical/radiological activity, current steroid or natalizumab treatment, as well as anti-JCPyV serology on CSF cell subset counts. RESULTS: While clinical/radiological activity was associated with increased CD4, natural killer (NK), B and plasma cell counts, natalizumab therapy reduced all subpopulations except monocytes. With and without natalizumab therapy, patients with high anti-JCPyV serum titers presented with increased CSF T-cell counts compared to patients with low anti-JCPyV serum titers. In contrast, PML patients assessed before (n = 2) or at diagnosis (n = 5) presented with comparably low CD8 and B-cell counts, which increased after plasma exchange (n = 4). CONCLUSION: High anti-JCPyV indices, which could be indicative of increased viral activity, are associated with elevated immune cell recruitment to the CNS. Its excessive impairment in conjunction with viral activity could predispose for PML development.
Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Esclerose Múltipla Recidivante-Remitente , Contagem de Células , Humanos , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Natalizumab/uso terapêuticoRESUMO
Multiple sclerosis is a chronic auto-inflammatory disease of the central nervous system affecting patients worldwide. Neuroinflammation in multiple sclerosis is mainly driven by peripheral immune cells which invade the central nervous system and cause neurodegenerative inflammation. To enter the target tissue, immune cells have to overcome the endothelium and transmigrate into the tissue. Numerous molecules mediate this process and, as they determine the tissue invasiveness of immune cells, display great therapeutic potential. Melanoma cell adhesion molecule (MCAM) is a membrane-anchored glycoprotein expressed by a subset of T-cells and MCAM+ T-cells have been shown to contribute to neuroinflammation in multiple sclerosis. The role of the MCAM molecule for brain invasion, however, remained largely unknown. In order to investigate the role of the MCAM molecule on T-cells, we used different in vitro and in vivo assays, including ex vivo flow chambers, biochemistry and microscopy experiments of the mouse brain. We demonstrate that MCAM directly mediates adhesion and that the engagement of MCAM induces intracellular signaling leading to ß1-integrin activation on human T-cells. Furthermore, we show that MCAM engagement triggers the phosphorylation of PLCγ1 which is required for integrin activation and thus amplification of the cellular adhesive potential. To confirm the physiological relevance of our findings in vivo, we demonstrate that MCAM plays an important role in T-cell recruitment into the mouse brain. In conclusion, our data demonstrate that MCAM expressed on T-cells acts as an adhesion molecule and a signaling receptor that may trigger ß1-integrin activation via PLCγ1 upon engagement.
Assuntos
Encéfalo/imunologia , Memória Imunológica , Integrina beta1/imunologia , Esclerose Múltipla/imunologia , Fosfolipase C gama/imunologia , Linfócitos T/imunologia , Animais , Encéfalo/patologia , Antígeno CD146/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Esclerose Múltipla/patologia , Linfócitos T/patologiaAssuntos
Anticorpos Monoclonais Humanizados/farmacologia , Fatores Imunológicos/farmacologia , Memória Imunológica , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Leucoencefalopatia Multifocal Progressiva/imunologia , Subpopulações de Linfócitos T , Adulto , Humanos , MasculinoRESUMO
Although the CNS is immune privileged, continuous search for pathogens and tumours by immune cells within the CNS is indispensable. Thus, distinct immune-cell populations also cross the blood-brain barrier independently of inflammation/under homeostatic conditions. It was previously shown that effector memory T cells populate healthy CNS parenchyma in humans and, independently, that CCR5-expressing lymphocytes as well as CCR5 ligands are enriched in the CNS of patients with multiple sclerosis. Apart from the recently described CD8+ CNS tissue-resident memory T cells, we identified a population of CD4+CCR5high effector memory cells as brain parenchyma-surveilling cells. These cells used their high levels of VLA-4 to arrest on scattered VCAM1, their open-conformation LFA-1 to crawl preferentially against the flow in search for sites permissive for extravasation, and their stored granzyme K (GZMK) to induce local ICAM1 aggregation and perform trans-, rather than paracellular diapedesis through unstimulated primary brain microvascular endothelial cells. This study included peripheral blood mononuclear cell samples from 175 healthy donors, 29 patients infected with HIV, with neurological symptoms in terms of cognitive impairment, 73 patients with relapsing-remitting multiple sclerosis in remission, either 1-4 weeks before (n = 29), or 18-60 months after the initiation of natalizumab therapy (n = 44), as well as white matter brain tissue of three patients suffering from epilepsy. We here provide ex vivo evidence that CCR5highGZMK+CD4+ effector memory T cells are involved in CNS immune surveillance during homeostasis, but could also play a role in CNS pathology. Among CD4+ T cells, this subset was found to dominate the CNS of patients without neurological inflammation ex vivo. The reduction in peripheral blood of HIV-positive patients with neurological symptoms correlated to their CD4 count as a measure of disease progression. Their peripheral enrichment in multiple sclerosis patients and specific peripheral entrapment through the CNS infiltration inhibiting drug natalizumab additionally suggests a contribution to CNS autoimmune pathology. Our transcriptome analysis revealed a migratory phenotype sharing many features with tissue-resident memory and Th17.1 cells, most notably the transcription factor eomesodermin. Knowledge on this cell subset should enable future studies to find ways to strengthen the host defence against CNS-resident pathogens and brain tumours or to prevent CNS autoimmunity.
Assuntos
Granzimas/genética , Vigilância Imunológica/imunologia , Receptores CCR5/metabolismo , Migração Transendotelial e Transepitelial/genética , Migração Transendotelial e Transepitelial/imunologia , Complexo AIDS Demência/genética , Complexo AIDS Demência/psicologia , Adulto , Linfócitos T CD4-Positivos/imunologia , Células Endoteliais/imunologia , Células Endoteliais/patologia , Epilepsia/genética , Epilepsia/psicologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Esclerose Múltipla Recidivante-Remitente/genética , Esclerose Múltipla Recidivante-Remitente/psicologia , Molécula 1 de Adesão de Célula Vascular/genéticaRESUMO
BACKGROUND: Progressive multifocal leukoencephalopathy (PML) is a rare complication of patients treated with fingolimod. CASE PRESENTATION: Routine MRI eventually led to diagnosis of asymptomatic early PML that remained stable after discontinuation of fingolimod. As blood lymphocyte counts normalized, signs of immune reconstitution inflammatory syndrome (IRIS) and renewed MS activity developed. Both, advanced laboratory and ultrahigh field MRI findings elucidated differences between PML and MS. CONCLUSIONS: In our case, early discontinuation of fingolimod yielded a good outcome, lymphocyte counts reflected immune system activity, and paraclinical findings helped to differentiate between PML-IRIS and MS.
Assuntos
Cloridrato de Fingolimode/efeitos adversos , Síndrome Inflamatória da Reconstituição Imune/diagnóstico por imagem , Imunossupressores/efeitos adversos , Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Leucoencefalopatia Multifocal Progressiva/diagnóstico por imagem , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológicoAssuntos
Fatores Imunológicos/uso terapêutico , Selectina L/sangue , Leucoencefalopatia Multifocal Progressiva/sangue , Leucoencefalopatia Multifocal Progressiva/tratamento farmacológico , Natalizumab/uso terapêutico , Biomarcadores/sangue , Estudos de Coortes , Esquema de Medicação , Humanos , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos TestesRESUMO
OBJECTIVE: To evaluate characteristics relevant to diagnosis of JC polyomavirus-associated progressive multifocal leukoencephalopathy (PML), and PML risk stratification in a large national cohort of patients with multiple sclerosis during therapy with natalizumab. METHODS: Analysis of 292 adverse drug reaction forms on suspected cases of PML reported to the German national competent authority until July 2017. Patients not fulfilling PML diagnostic criteria or with insufficient information available were excluded. RESULTS: Of the 142 confirmed patients with PML, 72.3% (95% confidence interval [CI] 64.4%-79.1%) were women, and the median age was 43 years (range 19-69). Of these patients, 7.7% (95% CI 4.3%-13.5%) were clinically asymptomatic at time of PML diagnosis. PML was fatal in 9.1% (95% CI 5.3%-15.1%) of the patients. Infratentorial lesions on imaging were reported in 40% (95% CI 32.0%-48.6%) of the patients. JC polyomavirus DNA in CSF was undetectable at time of first analysis in 23.8% (95% CI 17.3%-31.9%) of the patients. Three patients tested negative for anti-JC polyomavirus antibodies within 6 to 18 months before PML diagnosis, with seroconversion confirmed 5.5 months, 7 months (in a post hoc analysis only), or at time of PML diagnosis. CONCLUSIONS: JC polyomavirus DNA detection in CSF has limited sensitivity in early PML, and clinical and imaging presentation may be atypical. Thus, critical revision of current PML diagnostic criteria is warranted. Negative anti-JC polyomavirus antibodies in sera do not preclude the later development of PML. This emphasizes the need for close and regular serologic, imaging, and clinical monitoring in patients treated with natalizumab.
Assuntos
Leucoencefalopatia Multifocal Progressiva/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Natalizumab/efeitos adversos , Adulto , Idoso , Anticorpos Antivirais/sangue , Feminino , Alemanha , Humanos , Leucoencefalopatia Multifocal Progressiva/sangue , Masculino , Pessoa de Meia-Idade , Natalizumab/uso terapêutico , Adulto JovemRESUMO
Multiple sclerosis (MS) is a disease of presumed auto-immune origin. Long-standing observations such as the correlation between MS incidence and geographical latitude or the levels of Vitamin D (Vit D) in the serum have implicated the environmental factors UVB radiation and diet in the etiology of the disease. Clinical trials have been conducted and are currently underway to elucidate whether a Vit D enriched diet or treatment with UVB can influence MS incidence, -severity, and -progression, as well as the ideal time point for treatment. This review summarizes the current scientific knowledge to the environmental factors UVB-light and Vit D concerning the clinical aspects of MS in epidemiological studies and clinical trials.
Assuntos
Esclerose Múltipla/sangue , Luz Solar , Deficiência de Vitamina D/sangue , Vitamina D/sangue , Ensaios Clínicos como Assunto/métodos , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/epidemiologia , Raios Ultravioleta , Vitamina D/administração & dosagem , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologiaRESUMO
BACKGROUND: Very late antigen 4 (VLA-4; integrin α4ß1) is critical for transmigration of T helper (TH) 1 cells into the central nervous system (CNS) under inflammatory conditions such as multiple sclerosis (MS). We have previously shown that VLA-4 and melanoma cell adhesion molecule (MCAM) are important for trans-endothelial migration of human TH17 cells in vitro and here investigate their contribution to pathogenic CNS inflammation. METHODS: Antibody blockade of VLA-4 and MCAM is assessed in murine models of CNS inflammation in conjunction with conditional ablation of α4-integrin expression in T cells. Effects of VLA-4 and MCAM blockade on lymphocyte migration are further investigated in the human system via in vitro T cell transmigration assays. RESULTS: Compared to the broad effects of VLA-4 blockade on encephalitogenic T cell migration over endothelial barriers, MCAM blockade impeded encephalitogenic T cell migration in murine models of MS that especially depend on CNS migration across the choroid plexus (CP). In transgenic mice lacking T cell α4-integrin expression (CD4::Itga4-/-), MCAM blockade delayed disease onset. Migration of MCAM-expressing T cells through the CP into the CNS was restricted, where laminin 411 (composed of α4, ß1, γ1 chains), the proposed major ligand of MCAM, is detected in the endothelial basement membranes of murine CP tissue. This finding was translated to the human system; blockade of MCAM with a therapeutic antibody reduced in vitro transmigration of MCAM-expressing T cells across a human fibroblast-derived extracellular matrix layer and a brain-derived endothelial monolayer, both expressing laminin α4. Laminin α4 was further detected in situ in CP endothelial-basement membranes in MS patients' brain tissue. CONCLUSIONS: Our findings suggest that MCAM-laminin 411 interactions facilitate trans-endothelial migration of MCAM-expressing T cells into the CNS, which seems to be highly relevant to migration via the CP and to potential future clinical applications in neuroinflammatory disorders.
Assuntos
Antígeno CD146/metabolismo , Plexo Corióideo/patologia , Encefalomielite Autoimune Experimental/patologia , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos/uso terapêutico , Antígeno CD146/imunologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Sistema Nervoso Central/patologia , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Adjuvante de Freund/toxicidade , Humanos , Integrina alfa4beta1/genética , Integrina alfa4beta1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito/toxicidade , Fragmentos de Peptídeos/toxicidade , Proteínas Quinases/genética , Proteínas Quinases/metabolismoRESUMO
HLA associations, T cell receptor (TCR) repertoire bias, and sex bias have independently been shown for many diseases. While some immunological differences between the sexes have been described, they do not fully explain bias in men toward many infections/cancers, and toward women in autoimmunity. Next-generation TCR variable beta chain (TCRBV) immunosequencing of 824 individuals was evaluated in a multiparametric analysis including HLA-A -B/MHC class I background, TCRBV usage, sex, age, ethnicity, and TCRBV selection/expansion dynamics. We found that HLA-associated shaping of TCRBV usage differed between the sexes. Furthermore, certain TCRBVs were selected and expanded in unison. Correlations between these TCRBV relationships and biochemical similarities in HLA-binding positions were different in CD8 T cells of patients with autoimmune diseases (multiple sclerosis and rheumatoid arthritis) compared with healthy controls. Within patients, men showed higher TCRBV relationship Spearman's rhos in relation to HLA-binding position similarities compared with women. In line with this, CD8 T cells of men with autoimmune diseases also showed higher degrees of TCRBV perturbation compared with women. Concerted selection and expansion of CD8 T cells in patients with autoimmune diseases, but especially in men, appears to be less dependent on high HLA-binding similarity than in CD4 T cells. These findings are consistent with studies attributing autoimmunity to processes of epitope spreading and expansion of low-avidity T cell clones and may have further implications for the interpretation of pathogenic mechanisms of infectious and autoimmune diseases with known HLA associations. Reanalysis of some HLA association studies, separating the data by sex, could be informative.
Assuntos
Imunidade Adaptativa/genética , Imunidade Adaptativa/fisiologia , Genes MHC Classe I/fisiologia , Adulto , Feminino , Humanos , Masculino , Fatores SexuaisRESUMO
BACKGROUND: Anti-John Cunningham virus (JCV) serology has been studied with varying results concerning longitudinal changes. OBJECTIVES AND METHODS: Results from 17 published natalizumab-treated multiple sclerosis (MS) patient cohorts were analyzed with common parameters and subsequently verified in two large independent cohorts with 722 and 499 patients from Germany and the United States. RESULTS: Published studies and the verification showed (1) a mean of 10.80% sero-negative patients presented with sero-status change to positivity per year; (2) patients, who sero-convert to index values <0.9, convert from near the threshold and have a high probability of reverting with time; (3) patients, who convert to index values >0.9, start with low index values; (4) while JCV sero-positive patients with low index values sometimes revert to sero-negativity, patients with high index values almost never revert; and (5) the conversion rate of natalizumab-treated patients is three to four times higher than the biological conversion by age. CONCLUSION: JCV sero-conversion was comparable using standardized parameters and indicates influence of natalizumab on JCV immune control. Converters to low index values are probably consistently infected with JCV with varying low levels of activity, in line with their low risk to develop progressive multifocal leukoencephalopathy (PML). Patients with high index values rarely revert back to sero-negativity.