Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35409322

RESUMO

Malignant mesothelioma (MM) is a currently incurable, aggressive cancer derived from mesothelial cells, most often resulting from asbestos exposure. The current first-line treatment in unresectable MM is cisplatin/pemetrexed, which shows very little long-term effectiveness, necessitating research for novel therapeutic interventions. The existing chemotherapies often act on the cytoskeleton, including actin filaments and microtubules, but recent advances indicate the 'fourth' form consisting of the family of septins, representing a novel target. The septin inhibitor forchlorfenuron (FCF) and FCF analogs inhibit MM cell growth in vitro, but at concentrations which are too high for clinical applications. Based on the reported requirement of the chloride group in the 2-position of the pyridine ring of FCF for MM cell growth inhibition and cytotoxicity, we systematically investigated the importance (cell growth-inhibiting capacity) of the halogen atoms fluorine, chlorine, bromine and iodine in the 2- or 3-position of the pyridine ring. The MM cell lines ZL55, MSTO-211H, and SPC212, and-as a control-immortalized Met-5A mesothelial cells were used. The potency of the various halogen substitutions in FCF was mostly correlated with the atom size (covalent radius); the small fluoride analogs showed the least effect, while the largest one (iodide) most strongly decreased the MTT signals, in particular in MM cells derived from epithelioid MM. In the latter, the strongest effects in vitro were exerted by the 2-iodo and, unexpectedly, the 2-trifluoromethyl (2-CF3) FCF analogs, which were further tested in vivo in mice. However, FCF-2-I and, more strongly, FCF-2-CF3 caused rapidly occurring strong symptoms of systemic toxicity at doses lower than those previously obtained with FCF. Thus, we investigated the effectiveness of FCF (and selected analogs) in vitro in MM cells which were first exposed to cisplatin. The slowly appearing population of cisplatin-resistant cells was still susceptible to the growth-inhibiting/cytotoxic effect of FCF and its analogs, indicating that cisplatin and FCF target non-converging pathways in MM cells. Thus, a combination therapy of cisplatin and FCF (analogs) might represent a new avenue for the treatment of repopulating chemo-resistant MM cells in this currently untreatable cancer.


Assuntos
Antineoplásicos , Mesotelioma Maligno , Mesotelioma , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/metabolismo , Cisplatino/farmacologia , Halogênios/metabolismo , Mesotelioma/tratamento farmacológico , Camundongos , Compostos de Fenilureia/farmacologia , Piridinas , Septinas/metabolismo
2.
Oncotarget ; 10(65): 6944-6956, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31857849

RESUMO

Malignant mesothelioma (MM) is one of the most aggressive cancer types with a patient's life expectancy of typically less than one year upon diagnosis. The urgency of finding novel therapeutic approaches to treat mesothelioma is evident. Here we tested the effect of the plant-growth regulator forchlorfenuron (FCF), an inhibitor of septin function(s) in mammalian cells, on the viability and proliferation of MM cell lines, as well as other tumor cell lines derived from lung, prostate, colon, ovary, cervix and breast. Exposure to FCF strongly inhibited proliferation of human and mouse (most efficiently epithelioid) MM cells and all other tumor cells in a concentration-dependent manner and led to cell cycle arrest and cell death. The role of septin 7 (SEPT7), a presumably essential target of FCF in MM cells was confirmed by an shRNA strategy. FCF was robustly inhibiting tumor cell growth in vitro at low micromolar (IC50: ≈20-60µM) concentrations and more promisingly also in vivo. Initial experiments with FCF analogous revealed the importance of FCF's chloride group for efficient cell growth inhibition. FCF's rather low systemic toxicity might warrant for an extended search for other related and possibly more potent FCF analogues to target MM and putatively other septin-dependent tumors.

3.
Int J Mol Sci ; 20(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671889

RESUMO

Malignant mesothelioma (MM) is an aggressive asbestos-linked neoplasm, characterized by dysregulation of signaling pathways. Due to intrinsic or acquired chemoresistance, MM treatment options remain limited. Calretinin is a Ca2+-binding protein expressed during MM tumorigenesis that activates the FAK signaling pathway, promoting invasion and epithelial-to-mesenchymal transition. Constitutive calretinin downregulation decreases MM cells' growth and survival, and impairs tumor formation in vivo. In order to evaluate early molecular events occurring during calretinin downregulation, we generated a tightly controlled IPTG-inducible expression system to modulate calretinin levels in vitro. Calretinin downregulation significantly reduced viability and proliferation of MM cells, attenuated FAK signaling and reduced the invasive phenotype of surviving cells. Importantly, surviving cells showed a higher resistance to cisplatin due to increased Wnt signaling. This resistance was abrogated by the Wnt signaling pathway inhibitor 3289-8625. In various MM cell lines and regardless of calretinin expression levels, blocking of FAK signaling activated the Wnt signaling pathway and vice versa. Thus, blocking both pathways had the strongest impact on MM cell proliferation and survival. Chemoresistance mechanisms in MM cells have resulted in a failure of single-agent therapies. Targeting of multiple components of key signaling pathways, including Wnt signaling, might be the future method-of-choice to treat MM.


Assuntos
Antineoplásicos/farmacologia , Calbindina 2/metabolismo , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Calbindina 2/genética , Carcinogênese , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Mesotelioma Maligno
4.
Oncotarget ; 9(91): 36256-36272, 2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30555628

RESUMO

Calretinin (CR) is used as a positive marker for human malignant mesothelioma (MM) and is essential for mesothelioma cell growth/survival. Yet, the putative role(s) of CR during MM formation in vivo, binding partners or CR's influence on specific signaling pathways remain unknown. We assessed the effect of CR overexpression in the human MM cell lines MSTO-211H and SPC111. CR overexpression augmented the migration and invasion of MM cells in vitro. These effects involved the activation of the focal adhesion kinase (FAK) signaling pathway, since levels of total FAK and phospho-FAK (Tyr397) were found up-regulated in these cells. CR was also implicated in controlling epithelial-to-mesenchymal transition (EMT), evidenced by changes of the cell morphology and up-regulation of typical EMT markers. Co-IP experiments revealed FAK as a new binding partner of CR. CR co-localized with FAK at focal adhesion sites; moreover, CR-overexpressing cells displayed enhanced nuclear FAK accumulation and an increased resistance towards the FAK inhibitor VS-6063. Finally, CR downregulation via a lentiviral shRNA against CR (CALB2) resulted in a significantly reduced tumor formation in vivo in an orthotopic xenograft mouse model based on peritoneal MM cell injection. Our results indicate that CR might be considered as a possible target for MM treatment.

5.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545133

RESUMO

Calretinin (CR; CALB2) belonging to the family of EF-hand Ca2+-binding proteins (CaBP) is widely used as a positive marker for the identification of human malignant mesothelioma (MM) and functionally was suggested to play a critical role during carcinogenesis of this highly aggressive asbestos-associated neoplasm. Increasing evidence suggests that CR not only acts as a prototypical Ca2+ buffer protein, i.e., limiting the amplitude of Ca2+ signals but also as a Ca2+ sensor. No studies have yet investigated whether other closely related CaBPs might serve as substitutes for CR's functions(s) in MM cells. Genetically modified MM cell lines with medium (MSTO-211H and ZL5) or low (SPC111) endogenous CR expression levels were generated that overexpress either CR's closest homologue calbindin-D28k (CB) or parvalbumin (PV), the latter considered as a "pure" Ca2+ buffer protein. After lentiviral shCALB2-mediated CR downregulation, in both MSTO-211H and ZL5 cells expressing CB or PV, the CR deficiency-mediated increase in cell death was not prevented by CB or PV. With respect to proliferation and cell morphology of SPC111 cells, CB was able to substitute for CR, but not for CR's other functions to promote cell migration or invasion. In conclusion, CR has a likely unique role in MM that cannot be substituted by "similar" CaBPs.


Assuntos
Calbindina 1/metabolismo , Calbindina 2/metabolismo , Neoplasias Pulmonares/metabolismo , Mesotelioma/metabolismo , Parvalbuminas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Células Clonais , Regulação para Baixo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Lentivirus/metabolismo , Mesotelioma Maligno , Fenótipo
6.
Cell Mol Life Sci ; 75(24): 4643-4666, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30255402

RESUMO

The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.


Assuntos
Células Epiteliais/citologia , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial , Parvalbuminas/metabolismo , Animais , Sinalização do Cálcio , Tamanho Celular , Cães , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Células Madin Darby de Rim Canino , Mitocôndrias/metabolismo , Mitofagia
7.
Biomark Res ; 6: 19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928505

RESUMO

BACKGROUND: Calretinin is the most widespread positive marker for the immunohistochemical identification of malignant mesothelioma (MM) and was proposed to serve as a blood-based biomarker. Functionally, evidence has accumulated that calretinin might be implicated in MM tumorigenesis. We aimed to identify calretinin (CR; Calb2) in murine MM and reactive mesothelial cells in granuloma from asbestos-exposed NF2+/- mice, a line heterozygous for the tumor suppressor merlin (NF2), used as a mouse MM model. Additionally, we sought to ascertain the presence of calretinin in MM cell lines from other mouse strains. We also intended to investigate the role of calretinin in mesotheliomagenesis by comparing the survival of asbestos-exposed NF2+/- and NF2+/-CR-/- mice. METHODS: NF2+/- and NF2+/-CR-/- mice, both lines on a C57Bl/6J background, were exposed to asbestos following an established protocol. Tumor histology and asbestos-induced mortality were assessed. MM and granuloma from NF2+/- mice were analyzed with immunohistochemical methods for calretinin expression. Levels of Calb2 mRNA and calretinin expression in tumors and MM cell lines of various mouse strains were determined by RT-qPCR and Western blot analysis, respectively. RESULTS: No expression of calretinin at the protein level was detected, neither in MM from NF2+/- mice, NF2+/- MM-derived cell lines nor immortalized mesothelial cells of mouse origin. At the mRNA level we detected Calb2 expression in MM cell lines from different mouse strains. Survival of NF2+/- and NF2+/-CR-/- mice exposed to asbestos showed no significant difference in a log-rank (Kaplan-Meier) comparison. CONCLUSIONS: The concomitant determination of calretinin and mesothelin blood levels has been proposed for early detection of human MM. Mouse MM models based on asbestos exposure are assumed to yield helpful information on the time course of appearance of mesothelin and calretinin in the blood of asbestos-treated mice determining the earliest time point for interventions. However, the observed absence of calretinin in MM from NF2+/- mice and derived cell lines, as well as from MM cells from Balb/c and C3H mice likely precludes the use of calretinin as a biomarker for mouse MM. The results also indicate possible species differences with respect to an involvement of calretinin in the formation of MM.

8.
BMC Cancer ; 18(1): 471, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29699510

RESUMO

BACKGROUND: Cancer cell repopulation during chemotherapy or radiotherapy is a major factor limiting the efficacy of treatment. Cancer stem cells (CSC) may play critical roles during this process. We aim to demonstrate the role of mesothelioma stem cells (MSC) in treatment failure and eventually to design specific target therapies against MSC to improve the efficacy of treatment in malignant mesothelioma. METHODS: Murine mesothelioma AB12 and RN5 cells were used to compare tumorigenicity in mice. The expression of CSC-associated genes was evaluated by quantitative real-time PCR in both cell lines treated with chemo-radiation. Stemness properties of MSC-enriched RN5-EOS-Puro2 cells were characterized with flow cytometry and immunostaining. A MSC-specific gene profile was screened by microarray assay and confirmed thereafter. Gene Ontology analysis of the selected genes was performed by GOMiner. RESULTS: Tumor growth delay of murine mesothelioma AB12 cells was achieved after each cycle of cisplatin treatment, however, tumors grew back rapidly due to cancer cell repopulation between courses of chemotherapy. Strikingly, a 10-times lower number of irradiated cells in both cell lines led to a similar tumor incidence and growth rate as with untreated cells. The expression of CSC-associated genes such as CD24, CD133, CD90 and uPAR was dramatically up-regulated, while others did not change significantly after chemoradiation. Highly enriched MSC after selection with puromycin displayed an increasing GFP-positive population and showed typical properties of stemness. Comparatively, the proportion of MSC significantly increased after RN5-EOS parental cells were treated with either chemotherapy, γ-ray radiation, or a combination of the two, while MSC showed more resistance to the above treatments. A group of identified genes are most likely MSC-specific, and major pathways related to regulation of cell growth or apoptosis are involved. Upregulation of the gene transcripts Tnfsf18, Serpinb9b, Ly6a, and Nppb were confirmed. CONCLUSION: Putative MSC possess the property of stemness showing more resistance to chemoradiation, suggesting that MSC may play critical roles in cancer cell repopulation. Further identification of selected genes may be used to design novel target therapies against MSC, so as to eliminate cancer cell repopulation in mesothelioma.


Assuntos
Mesotelioma/genética , Mesotelioma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Biologia Computacional/métodos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Mesotelioma/patologia , Mesotelioma/terapia , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
BMC Cancer ; 18(1): 475, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29699512

RESUMO

BACKGROUND: The calcium-binding protein calretinin (gene name: CALB2) is currently considered as the most sensitive and specific marker for the diagnosis of malignant mesothelioma (MM). MM is a very aggressive tumor strongly linked to asbestos exposure and with no existing cure so far. The mechanisms of calretinin regulation, as well as its distinct function in MM are still poorly understood. METHODS: We searched for transcription factors binding to the CALB2 promoter and modulating calretinin expression. For this, DNA-binding assays followed by peptide shotgun-mass spectroscopy analyses were used. CALB2 promoter activity was assessed by dual-luciferase reporter assays. Furthermore, we analyzed the effects of CALB2 promoter-binding proteins by lentiviral-mediated overexpression or down-regulation of identified proteins in MM cells. The modulation of expression of such proteins by butyrate was determined by subsequent Western blot analysis. Immunohistochemical analysis of embryonic mouse lung tissue served to verify the simultaneous co-expression of calretinin and proteins interacting with the CALB2 promoter during early development. Finally, direct interactions of calretinin with target proteins were evidenced by co-immunoprecipitation experiments. RESULTS: Septin 7 was identified as a butyrate-dependent transcription factor binding to a CALB2 promoter region containing butyrate-responsive elements (BRE) resulting in decreased calretinin expression. Accordingly, septin 7 overexpression decreased calretinin expression levels in MM cells. The regulation was found to operate bi-directionally, i.e. calretinin overexpression also decreased septin 7 levels. During murine embryonic development calretinin and septin 7 were found to be co-expressed in embryonic mesenchyme and undifferentiated mesothelial cells. In MM cells, calretinin and septin 7 colocalized during cytokinesis in distinct regions of the cleavage furrow and in the midbody region of mitotic cells. Co-immunoprecipitation experiments revealed this co-localization to be the result of a direct interaction between calretinin and septin 7. CONCLUSIONS: Our results demonstrate septin 7 not only serving as a "cytoskeletal" protein, but also as a transcription factor repressing calretinin expression. The negative regulation of calretinin by septin 7 and vice versa sheds new light on mechanisms possibly implicated in MM formation and identifies these proteins as transcriptional regulators and putative targets for MM therapy.


Assuntos
Calbindina 2/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mesotelioma/genética , Mesotelioma/metabolismo , Regiões Promotoras Genéticas , Septinas/metabolismo , Animais , Sequência de Bases , Butiratos/farmacologia , Calbindina 2/química , Calbindina 2/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Ligação Proteica , Transporte Proteico , Proteólise , Elementos de Resposta
10.
Oncogene ; 37(20): 2645-2659, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29507420

RESUMO

Chronic exposure to intraperitoneal asbestos triggered a marked response in the mesothelium well before tumor development. Macrophages, mesothelial precursor cells, cytokines, and growth factors accumulated in the peritoneal lavage. Transcriptome profiling revealed YAP/TAZ activation in inflamed mesothelium with further activation in tumors, paralleled by increased levels of cells with nuclear YAP/TAZ. Arg1 was one of the highest upregulated genes in inflamed tissue and tumor. Inflamed tissue showed increased levels of single-nucleotide variations, with an RNA-editing signature, which were even higher in the tumor samples. Subcutaneous injection of asbestos-treated, but tumor-free mice with syngeneic mesothelioma tumor cells resulted in a significantly higher incidence of tumor growth when compared to naïve mice supporting the role of the environment in tumor progression.


Assuntos
Asbesto Crocidolita/efeitos adversos , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , Mesotelioma/genética , Edição de RNA , Ativação Transcricional , Proteínas Adaptadoras de Transdução de Sinal , Animais , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/metabolismo , Ativação de Macrófagos , Mesotelioma/induzido quimicamente , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos , Mutação , Fosfoproteínas , Polimorfismo de Nucleotídeo Único , Transativadores , Fatores de Transcrição , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP
11.
Mol Autism ; 9: 15, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507711

RESUMO

Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by two core symptoms: impaired social interaction and communication, and restricted, repetitive behaviors and interests. The pathophysiology of ASD is not yet fully understood, due to a plethora of genetic and environmental risk factors that might be associated with or causal for ASD. Recent findings suggest that one putative convergent pathway for some forms of ASD might be the downregulation of the calcium-binding protein parvalbumin (PV). PV-deficient mice (PV-/-, PV+/-), as well as Shank1-/-, Shank3-/-, and VPA mice, which show behavioral deficits relevant to all human ASD core symptoms, are all characterized by lower PV expression levels. Methods: Based on the hypothesis that PV expression might be increased by 17-ß estradiol (E2), PV+/- mice were treated with E2 from postnatal days 5-15 and ASD-related behavior was tested between postnatal days 25 and 31. Results: PV expression levels were significantly increased after E2 treatment and, concomitantly, sociability deficits in PV+/- mice in the direct reciprocal social interaction and the 3-chamber social approach assay, as well as repetitive behaviors, were attenuated. E2 treatment of PV+/+ mice did not increase PV levels and had detrimental effects on sociability and repetitive behavior. In PV-/- mice, E2 obviously did not affect PV levels; tested behaviors were not different from the ones in vehicle-treated PV-/- mice. Conclusion: Our results suggest that the E2-linked amelioration of ASD-like behaviors is specifically occurring in PV+/- mice, indicating that PV upregulation is required for the E2-mediated rescue of ASD-relevant behavioral impairments.


Assuntos
Transtorno Autístico/tratamento farmacológico , Estradiol/uso terapêutico , Parvalbuminas/genética , Comportamento Social , Comportamento Estereotipado , Animais , Transtorno Autístico/genética , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo , Fenótipo , Regulação para Cima
12.
J Biol Chem ; 293(14): 5247-5258, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29440274

RESUMO

Biological (or cellular) noise is the random quantitative variability of proteins and other molecules in individual, genetically identical cells. As the result of biological noise in the levels of some transcription factors that determine a cell's differentiation status, differentiated cells may dedifferentiate to a stem cell state given a sufficiently long time period. Here, to provide direct evidence supporting this hypothesis, we used a live-cell monitoring system based on enhanced green fluorescent protein (eGFP) expression to continuously assess the "stemness" of individual human and murine malignant mesothelioma cells over a period of up to 3 months. Re-expression of the transcription factors, the top hierarchical stemness markers Sox2 (SRY-box 2) and Oct4 (octamer-binding transcription factor), monitored as cell eGFP expression was observed in a subpopulation of differentiated eGFP(-) malignant mesothelioma cells. However, we found that this transition was extremely rare. Of note, when it did occur, neighboring cells that were not direct descendants of a newly emerged eGFP(+) stem cell were more likely than non-neighboring cells to also become an eGFP(+) stem cell. This observation suggested a positional effect and led to a clustered "mosaic" reappearance of eGFP(+) stem cells. Moreover, stem cells reappeared even in cell cultures derived from one single differentiated eGFP(-) cell. On the basis of our experimental in vitro and in vivo findings, we developed a tumor growth model to predict the clustered localization of cancer stem cells within a tumor mass.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Artefatos , Produtos Biológicos/metabolismo , Técnicas de Cultura de Células , Genes Reporter , Proteínas de Fluorescência Verde , Humanos , Camundongos , Modelos Biológicos , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo
13.
Redox Biol ; 14: 439-449, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29078169

RESUMO

Menthol is a naturally occurring monoterpene alcohol possessing remarkable biological properties including antipruritic, analgesic, antiseptic, anti-inflammatory and cooling effects. Here, we examined the menthol-evoked Ca2+ signals in breast and prostate cancer cell lines. The effect of menthol (50-500µM) was predicted to be mediated by the transient receptor potential ion channel melastatin subtype 8 (TRPM8). However, the intensity of menthol-evoked Ca2+ signals did not correlate with the expression levels of TRPM8 in breast and prostate cancer cells indicating a TRPM8-independent signaling pathway. Menthol-evoked Ca2+ signals were analyzed in detail in Du 145 prostate cancer cells, as well as in CRISPR/Cas9 TRPM8-knockout Du 145 cells. Menthol (500µM) induced Ca2+ oscillations in both cell lines, thus independent of TRPM8, which were however dependent on the production of inositol trisphosphate. Results based on pharmacological tools point to an involvement of the purinergic pathway in menthol-evoked Ca2+ responses. Finally, menthol (50-500µM) decreased cell viability and induced oxidative stress independently of the presence of TRPM8 channels, despite that temperature-evoked TRPM8-mediated inward currents were significantly decreased in TRPM8-knockout Du 145 cells compared to wild type Du 145 cells.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Mentol/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Canais de Cátion TRPM/agonistas , Canais de Cátion TRPM/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo
15.
Front Genet ; 8: 70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611824

RESUMO

Calretinin (CALB2) is a diagnostic and prognostic marker in malignant pleural mesothelioma (MPM). We previously reported that calretinin expression is regulated at the mRNA level. The presence of a medium-sized (573 nucleotide) 3' untranslated region (3'UTR) predicted to contain binding sites for miR-30a/b/c/d/e and miR-9 as well as an adenine/uridine-rich element (ARE) in all three transcripts arising from the CALB2 gene, suggests that calretinin expression is regulated via posttranscriptional mechanisms. Our aim was to investigate the role of the CALB2-3'UTR in the posttranscriptional regulation of calretinin expression in MPM. CALB2-3'UTR was inserted downstream of the luciferase reporter gene using pmiRGLO vector and reporter expression was determined after transfection into MPM cells. Targeted mutagenesis was used to generate variants harboring mutated miR-30 family and ARE binding sites. Electrophoretic mobility shift assay was used to test for the presence of ARE binding proteins. CALB2-3'UTR significantly decreased luciferase activity in MPM cells. Analysis of mutation in the ARE site revealed a further destabilization of the reporter and human antigen R (HuR) binding to the ARE sequence was detected. The mutation of two miR-30 binding sites abolished CALB2-3'UTR destabilization effect; a transient delivery of miR-30e-5p mimics or anti-miR into MPM cells resulted in a significant decrease/increase of the luciferase reporter expression and calretinin protein, respectively. Moreover, overexpression of CALB2-3'UTR quenched the effect of miR-30e-5p mimics on calretinin protein levels, possibly by sequestering the mimics, thereby suggesting a competitive endogenous RNA network. Finally, by data mining we observed that expression of miR-30e-5p was negatively correlated with the calretinin expression in a cohort of MPM patient samples. Our data show the role of (1) adenine-uridine (AU)-binding proteins in calretinin stabilization and (2) miR-30e-5p in the posttranscriptional negative regulation of calretinin expression via interaction with its 3'UTR. Furthermore, our study demonstrates a possible physiological role of calretinin's alternatively spliced transcripts.

16.
PLoS One ; 12(6): e0179950, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28640864

RESUMO

There is convincing epidemiological and experimental evidence that capsaicin, a potent natural transient receptor potential cation channel vanilloid member 1 (TRPV1) agonist, has anticancer activity. However, capsaicin cannot be given systemically in large doses, because of its induction of acute pain and neurological inflammation. MRS1477, a dihydropyridine derivative acts as a positive allosteric modulator of TRPV1, if added together with capsaicin, but is ineffective, if given alone. Addition of MRS1477 evoked Ca2+ signals in MCF7 breast cancer cells, but not in primary breast epithelial cells. This indicates that MCF7 cells not only express functional TRPV1 channels, but also produce endogenous TRPV1 agonists. We investigated the effects of MRS1477 and capsaicin on cell viability, caspase-3 and -9 activities and reactive oxygen species production in MCF7 cells. The fraction of apoptotic cells was increased after 3 days incubation with capsaicin (10 µM) paralleled by increased reactive oxygen species production and caspase activity. These effects were even more pronounced, when cells were incubated with MRS1477 (2 µM) either alone or together with CAPS (10 µM). Capsazepine, a TRPV1 blocker, inhibited both the effect of capsaicin and MRS1477. Whole-cell patch clamp recordings revealed that capsaicin-evoked TRPV1-mediated current density levels were increased after 3 days incubation with MRS1477 (2 µM). However, the tumor growth in MCF7 tumor-bearing immunodeficient mice was not significantly decreased after treatment with MRS1477 (10 mg/ kg body weight, i.p., injection twice a week). In conclusion, in view of a putative in vivo treatment with MRS1477 or similar compounds further optimization is required.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Di-Hidropiridinas/farmacologia , Terapia de Alvo Molecular , Canais de Cátion TRPV/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Capsaicina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Células MCF-7 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Stem Cell Reports ; 8(4): 1005-1017, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28285878

RESUMO

Malignant mesothelioma (MM) is an aggressive neoplasm characterized by a poor patient survival rate, because of rapid tumor recurrence following first-line therapy. Cancer stem cells (CSCs) are assumed to be responsible for initiating tumorigenesis and driving relapse after therapeutic interventions. CSC-enriched MM cell subpopulations were identified by an OCT4/SOX2 reporter approach and were characterized by (1) increased resistance to cisplatin, (2) increased sensitivity toward the FAK inhibitor VS-6063 in vitro, and (3) a higher tumor-initiating capacity in vivo in orthotopic xenograft and allograft mouse models. Overexpression of NF2 (neurofibromatosis 2, merlin), a tumor suppressor often mutated or lost in MM, did not affect proliferation and viability of CSC-enriched MM populations but robustly decreased the viability of reporter-negative cells. In contrast, downregulation of calretinin strongly decreased proliferation and viability of both populations. In summary, we have enriched and characterized a small MM cell subpopulation that bears the expected CSC characteristics.


Assuntos
Neoplasias Pulmonares/patologia , Pulmão/patologia , Mesotelioma/patologia , Células-Tronco Neoplásicas/patologia , Fator de Células-Tronco/análise , Animais , Antineoplásicos/farmacologia , Calbindina 2/análise , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Pulmão/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Mesotelioma Maligno , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Neurofibromina 2/análise , Fator 3 de Transcrição de Octâmero/análise , Fatores de Transcrição SOXB1/análise
18.
Biochim Biophys Acta ; 1863(12): 2905-2915, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27663071

RESUMO

Sensory neuron subpopulations as well as breast and prostate cancer cells express functional transient receptor potential vanilloid type 1 (TRPV1) ion channels; however little is known how TRPV1 activation leads to biological responses. Agonist-induced activation of TRPV1 resulted in specific spatiotemporal patterns of cytoplasmic Ca2+ signals in breast and prostate cancer-derived cells. Capsaicin (CAPS; 50µM) evoked intracellular Ca2+ oscillations and/or intercellular Ca2+ waves in all cell lines. As evidenced in prostate cancer Du 145 cells, oscillations were largely dependent on the expression of functional TRPV1 channels in the plasma membrane, phospholipase C activation and on the presence of extracellular Ca2+ ions. Concomitant oscillations of the mitochondrial matrix Ca2+ concentration resulted in mitochondria energization evidenced by increased ATP production. CAPS-induced Ca2+ oscillations also occurred in a subset of sensory neurons, yet already at lower CAPS concentrations (1µM). Stimulation of ectopically expressed TRPV1 channels in CAPS-insensitive NIH-3T3 cells didn't provoke CAPS-triggered Ca2+ oscillations; rather it resulted in low-magnitude, long-lasting elevations of the cytosolic Ca2+ concentration. This indicates that sole TRPV1 activation is not sufficient to generate Ca2+ oscillations. Instead the initial TRPV1-mediated signal leads to the activation of the inositol phospholipid pathway. This in turn suffices to generate a biologically relevant frequency-modulated Ca2+ signal.


Assuntos
Cálcio/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/metabolismo , Fosfolipases Tipo C/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio , Capsaicina/análogos & derivados , Capsaicina/farmacologia , Linhagem Celular Tumoral , Diterpenos/farmacologia , Expressão Gênica , Células HEK293 , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Células NIH 3T3 , Cultura Primária de Células , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/genética , Gânglio Trigeminal/citologia , Gânglio Trigeminal/efeitos dos fármacos , Fosfolipases Tipo C/genética
19.
Biochim Biophys Acta ; 1863(8): 2054-64, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27180305

RESUMO

Vanilloids including capsaicin and resiniferatoxin are potent transient receptor potential vanilloid type 1 (TRPV1) agonists. TRPV1 overstimulation selectively ablates capsaicin-sensitive sensory neurons in animal models in vivo. The cytotoxic mechanisms are based on strong Na(+) and Ca(2+) influx via TRPV1 channels, which leads to mitochondrial Ca(2+) accumulation and necrotic cell swelling. Increased TRPV1 expression levels are also observed in breast and prostate cancer and derived cell lines. Here, we examined whether potent agonist-induced overstimulation mediated by TRPV1 might represent a means for the eradication of prostate carcinoma (PC-3, Du 145, LNCaP) and breast cancer (MCF7, MDA-MB-231, BT-474) cells in vitro. While rat sensory neurons were highly vanilloid-sensitive, normal rat prostate epithelial cells were resistant in vivo. We found TRPV1 to be expressed in all cancer cell lines at mRNA and protein levels, yet protein expression levels were significantly lower compared to sensory neurons. Treatment of all human carcinoma cell lines with capsaicin didn't lead to overstimulation cytotoxicity in vitro. We assume that the low vanilloid-sensitivity of prostate and breast cancer cells is associated with low expression levels of TRPV1, since ectopic TRPV1 expression rendered them susceptible to the cytotoxic effect of vanilloids evidenced by plateau-type Ca(2+) signals, mitochondrial Ca(2+) accumulation and Na(+)- and Ca(2+)-dependent membrane disorganization. Moreover, long-term monitoring revealed that merely the ectopic expression of TRPV1 stopped cell proliferation and often induced apoptotic processes via strong activation of caspase-3 activity. Our results indicate that specific targeting of TRPV1 function remains a putative strategy for cancer treatment.


Assuntos
Neoplasias da Mama/patologia , Capsaicina/farmacologia , Diterpenos/farmacologia , Células Epiteliais/efeitos dos fármacos , Proteínas de Neoplasias/fisiologia , Neoplasias da Próstata/patologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Animais , Apoptose/fisiologia , Mama/metabolismo , Neoplasias da Mama/metabolismo , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Humanos , Masculino , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Cátion TRPV/biossíntese , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/fisiologia , Gânglio Trigeminal/metabolismo
20.
Oncotarget ; 7(16): 21272-86, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26848772

RESUMO

Calretinin (CALB2) is a diagnostic marker for epithelioid mesothelioma. It is also a prognostic marker since patients with tumors expressing high calretinin levels have better overall survival. Silencing of calretinin decreases viability of epithelioid mesothelioma cells. Our aim was to elucidate mechanisms regulating calretinin expression in mesothelioma. Analysis of calretinin transcript and protein suggested a control at the mRNA level. Treatment with 5-aza-2'-deoxycytidine and analysis of TCGA data indicated that promoter methylation is not likely to be involved. Therefore, we investigated CALB2 promoter by analyzing ~1kb of genomic sequence surrounding the transcription start site (TSS) + 1 using promoter reporter assay. Deletion analysis of CALB2 proximal promoter showed that sequence spanning the -161/+80bp region sustained transcriptional activity. Site-directed analysis identified important cis-regulatory elements within this -161/+80bp CALB2 promoter. EMSA and ChIP assays confirmed binding of NRF-1 and E2F2 to the CALB2 promoter and siRNA knockdown of NRF-1 led to decreased expression of calretinin. Cell synchronization experiment showed that calretinin expression was cell cycle regulated with a peak of expression at G1/S phase. This study provides the first insight in the regulation of CALB2 expression in mesothelioma cells.


Assuntos
Calbindina 2/genética , Regulação Neoplásica da Expressão Gênica , Mesotelioma/genética , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , Calbindina 2/metabolismo , Células Cultivadas , Fator de Transcrição E2F2/genética , Fator de Transcrição E2F2/metabolismo , Humanos , Mesotelioma/metabolismo , Mesotelioma/patologia , Fator 1 Nuclear Respiratório/genética , Fator 1 Nuclear Respiratório/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA