Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32764435

RESUMO

Health impacts of electronic cigarette (e-cigarette) vaping are associated with the harmful chemicals emitted from e-cigarettes such as carbonyls. However, the levels of various carbonyl compounds under real-world vaping conditions have been understudied. This study evaluated the levels of carbonyl compounds (e.g., formaldehyde, acetaldehyde, glyoxal, and diacetyl, etc.) under various device settings (i.e., power output), vaping topographies, and e-liquid compositions (i.e., base liquid, flavor types). The results showed that e-vapor carbonyl levels were the highest under higher power outputs. The propylene glycol (PG)-based e-liquids generated higher formaldehyde and acetaldehyde than vegetable glycerin (VG)-based e-liquids. In addition, fruit flavored e-liquids (i.e., strawberry and dragon fruit) generated higher formaldehyde emissions than mint/menthol and creamy/sweet flavored e-liquids. While single-top coils formed 3.5-fold more formaldehyde per puff than conventional cigarette smoking, bottom coils generated 10-10,000 times less formaldehyde per puff. In general, increases in puff volume and longer puff durations generated significantly higher amounts of formaldehyde. While e-cigarettes emitted much lower levels of carbonyl compounds compared to conventional cigarettes, the presence of several toxic carbonyl compounds in e-cigarette vapor may still pose potential health risks for users without smoking history, including youth. Therefore, the public health administrations need to consider the vaping conditions which generated higher carbonyls, such as higher power output with PG e-liquid, when developing e-cigarette product standards.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Aromatizantes , Formaldeído , Humanos
2.
Chem Res Toxicol ; 33(2): 343-352, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-31804072

RESUMO

E-cigarette use is dramatically increasing, particularly with adolescents. While the chemical composition of e-liquids and e-vapor is well characterized, the particle size distribution and the human airways deposition patterns of e-cigarette particles are understudied and poorly understood despite their likely contribution to adverse health effects from e-cigarette usage. In this study, we examined the impacts of e-cigarette device power, e-liquid composition, and vaping topography on e-cigarette particle sizes and their deposition in human airways. In addition, we observed that particle measurement conditions (dilution ratio, temperature, and humidity) significantly affect measured e-cigarette particle sizes. E-cigarette power output significantly increased particle count median diameters (CMD) from 174 ± 13 (particles generated under 6.4 W) to 236 ± 14 nm (particles generated under 31.1 W). E-cigarette particles generated from propylene glycol-based e-liquids (CMD = 145 ± 8 nm and mass median diameter [MMD] = 3.06 ± 0.17 µm) were smaller than those generated from vegetable glycerin-based e-liquids (CMD = 182 ± 9 nm and MMD = 3.37 ± 0.21 µm). Puff volume also impacted vapor particle size: CMD and MMD were 154 ± 11 nm and 3.50 ± 0.27 µm, 163 ± 6 nm and 3.35 ± 0.24 µm, and 146 ± 12 nm and 2.95 ± 0.14 µm, respectively, for 35, 90, and 170 mL puffs. Estimated e-cigarette particle mass deposition fractions in tracheobronchial and bronchoalveolar regions were 0.504-0.541 and 0.073-0.306, respectively. Interestingly, e-cigarette particles are smaller than the particles generated from cigarette smoking but have similar human airway deposition patterns.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Sistema Respiratório/química , Adolescente , Adulto , Aerossóis/análise , Idoso , Feminino , Humanos , Umidade , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Temperatura , Adulto Jovem
3.
PLoS One ; 14(7): e0219122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31295271

RESUMO

Exposure to air pollution particulate matter (PM) and tuberculosis (TB) are two of the leading global public health challenges affecting low and middle income countries. An estimated 4.26 million premature deaths are attributable to household air pollution and an additional 4.1 million to outdoor air pollution annually. Mycobacterium tuberculosis (M.tb) infects a large proportion of the world's population with the risk for TB development increasing during immunosuppressing conditions. There is strong evidence that such immunosuppressive conditions develop during household air pollution exposure, which increases rates of TB development. Exposure to urban air pollution has been shown to alter the outcome of TB therapy. Here we examined whether in vitro exposure to urban air pollution PM alters human immune responses to M.tb. PM2.5 and PM10 (aerodynamic diameters <2.5µm, <10µm) were collected monthly from rainy, cold-dry and warm-dry seasons in Iztapalapa, a highly populated TB-endemic municipality of Mexico City with elevated outdoor air pollution levels. We evaluated the effects of seasonality and size of PM on cytotoxicity and antimycobacterial host immunity in human peripheral blood mononuclear cells (PBMC) from interferon gamma (IFN-γ) release assay (IGRA)+ and IGRA- healthy study subjects. PM10 from cold-dry and warm-dry seasons induced the highest cytotoxicity in PBMC. With the exception of PM2.5 from the cold-dry season, pre-exposure to all seasonal PM reduced M.tb phagocytosis by PBMC. Furthermore, M.tb-induced IFN-γ production was suppressed in PM2.5 and PM10-pre-exposed PBMC from IGRA+ subjects. This observation coincides with the reduced expression of M.tb-induced T-bet, a transcription factor regulating IFN-γ expression in T cells. Pre-exposure to PM10 compared to PM2.5 led to greater loss of M.tb growth control. Exposure to PM2.5 and PM10 collected in different seasons differentially impairs M.tb-induced human host immunity, suggesting biological mechanisms underlying altered M.tb infection and TB treatment outcomes during air pollution exposures.


Assuntos
Poluentes Atmosféricos/toxicidade , Citotoxicidade Imunológica/efeitos dos fármacos , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/patogenicidade , Material Particulado/toxicidade , Adolescente , Adulto , Idoso , Cidades , Exposição Ambiental/efeitos adversos , Feminino , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Técnicas In Vitro , Interferon gama/biossíntese , Interleucina-1beta/biossíntese , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Masculino , México , Pessoa de Meia-Idade , Mycobacterium tuberculosis/crescimento & desenvolvimento , Tamanho da Partícula , Fagocitose/efeitos dos fármacos , Estações do Ano , Proteínas com Domínio T/imunologia , Saúde da População Urbana , Adulto Jovem
4.
Thorax ; 74(7): 675-683, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31036772

RESUMO

RATIONALE: Associations between urban (outdoor) airborne particulate matter (PM) exposure and TB and potential biological mechanisms are poorly explored. OBJECTIVES: To examine whether in vivo exposure to urban outdoor PM in Mexico City and in vitro exposure to urban outdoor PM2.5 (< 2.5 µm median aerodynamic diameter) alters human host immune cell responses to Mycobacterium tuberculosis. METHODS: Cellular toxicity (flow cytometry, proliferation assay (MTS assay)), M. tuberculosis and PM2.5 phagocytosis (microscopy), cytokine-producing cells (Enzyme-linked immune absorbent spot (ELISPOT)), and signalling pathway markers (western blot) were examined in bronchoalveolar cells (BAC) and peripheral blood mononuclear cells (PBMC) from healthy, non-smoking, residents of Mexico City (n=35; 13 female, 22 male). In vivo-acquired PM burden in alveolar macrophages (AM) was measured by digital image analysis. MEASUREMENTS AND MAIN RESULTS: In vitro exposure of AM to PM2.5 did not affect M. tuberculosis phagocytosis. High in vivo-acquired AM PM burden reduced constitutive, M. tuberculosis and PM-induced interleukin-1ß production in freshly isolated BAC but not in autologous PBMC while it reduced constitutive production of tumour necrosis factor-alpha in both BAC and PBMC. Further, PM burden was positively correlated with constitutive, PM, M. tuberculosis and purified protein derivative (PPD)-induced interferon gamma (IFN-γ) in BAC, and negatively correlated with PPD-induced IFN-γ in PBMC. CONCLUSIONS: Inhalation exposure to urban air pollution PM impairs important components of the protective human lung and systemic immune response against M. tuberculosis. PM load in AM is correlated with altered M. tuberculosis-induced cytokine production in the lung and systemic compartments. Chronic PM exposure with high constitutive expression of proinflammatory cytokines results in relative cellular unresponsiveness.


Assuntos
Pulmão/imunologia , Mycobacterium tuberculosis/imunologia , Material Particulado/efeitos adversos , Saúde da População Urbana/estatística & dados numéricos , Adulto , Líquido da Lavagem Broncoalveolar/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Citocinas/biossíntese , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Citometria de Fluxo/métodos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , México , Pessoa de Meia-Idade , Tamanho da Partícula , Material Particulado/análise , Material Particulado/farmacologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Adulto Jovem
5.
Chem Res Toxicol ; 32(6): 1087-1095, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-30977360

RESUMO

Available studies, while limited in number, suggest that e-cigarette vaping induces oxidative stress, with one potential mechanism being the direct formation of reactive oxygen species (ROS) in e-vapor. In the present studies, we measured the formation of hydroxyl radical (•OH), the most destructive ROS, in e-vapor under a range of vaping patterns (i.e., power settings, solvent concentrations, flavorings). Study results show that increased power output and puff volume correspond with the formation of significantly higher amounts of •OH in e-vapor because of elevated coil temperature and oxygen supply. Vegetable glycerin (VG) e-liquids generated higher •OH levels than propylene glycol (PG) e-liquids, as did flavored e-liquids relative to nonflavored e-liquids. E-vapor in combination with ascorbic acid, which is an abundant biological molecule in human epithelial lining fluid, can also induce •OH formation. The dose of radical per puff associated with e-cigarette vaping was 10-1000 times lower than the reported dose generated by cigarette smoking. However, the daily average •OH dose can be comparable to that from cigarette smoking depending on vaping patterns. Overall, e-cigarette users who use VG-based flavored e-cigarettes at higher power output settings may be at increased risk for •OH exposures and related health consequences such as asthma and chronic obstructive pulmonary disease.


Assuntos
Vapor do Cigarro Eletrônico/química , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/química , Radical Hidroxila/análise , Vaping , Humanos , Ligantes , Oxirredução
6.
Chem Res Toxicol ; 31(9): 861-868, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30080399

RESUMO

Nicotine is one of the major components of electronic cigarette (e-cigarette) emissions. Nicotyrine is a product of nicotine dehydrogenation in e-vapor and is a known inhibitor of human cytochrome P450 enzyme, which mediates nicotine metabolism. However, the emission of nicotine and especially nicotyrine from e-cigarettes has not been studied under real-world vaping patterns. This study examined the impact of e-liquid composition, e-cigarette device power output, and vaping topography on nicotine and nicotyrine concentrations under real-world vaping patterns. The amount of nicotine emitted from e-cigarettes vaped at high e-liquid nicotine levels, high device power, and large puff volumes ranged from 0.365 µg/puff to 236 µg/puff and was comparable to the amount of nicotine emitted from regular cigarettes. E-cigarette coil temperatures (200-300 °C) favored the formation of nicotyrine: E-cigarette vaping generated 2- to 63-fold more nicotyrine per unit nicotine emission than conventional cigarette smoking. High nicotyrine emission from e-cigarettes indicates that nicotine metabolism could be potentially interrupted, which could lead to reduced e-cigarette usage, and result in lower exposures to toxic chemicals (e.g., formaldehyde and acetaldehyde). However, higher serum nicotine levels might increase cancer risks by stimulating nicotinic acetylcholine receptors (nAchRs).


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/instrumentação , Nicotina/análise , Vaping , Humanos , Nicotina/análogos & derivados
7.
ACS Nano ; 12(6): 5228-5240, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29767993

RESUMO

Mycobacterium tuberculosis ( M.tb) has the extraordinary ability to adapt to the administration of antibiotics through the development of resistance mechanisms. By rapidly exporting drugs from within the cytosol, these pathogenic bacteria diminish antibiotic potency and drive the presentation of drug-tolerant tuberculosis (TB). The membrane integrity of M.tb is pivotal in retaining these drug-resistant traits. Silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs) are established antimicrobial agents that effectively compromise membrane stability, giving rise to increased bacterial permeability to antibiotics. In this work, biodegradable multimetallic microparticles (MMPs), containing Ag NPs and ZnO NPs, were developed for use in pulmonary delivery of antituberculous drugs to the endosomal system of M.tb-infected macrophages. Efficient uptake of MMPs by M.tb-infected THP1 cells was demonstrated using an in vitro macrophage infection model, with direct interaction between MMPs and M.tb visualized with the use of electron FIB-SEM tomography. The release of Ag NPs and ZnO NPs within the macrophage endosomal system increased the potency of the model antibiotic rifampicin by as much as 76%, realized through an increase in membrane disorder of intracellular M.tb. MMPs were effective at independently driving membrane destruction of extracellular bacilli located at the exterior face of THP1 macrophages. This MMP system presents as an effective drug delivery vehicle that could be used for the transport of antituberculous drugs such as rifampicin to infected alveolar macrophages, while increasing drug potency. By increasing M.tb membrane permeability, such a system may prove effectual in improving treatment of drug-susceptible TB in addition to M.tb strains considered drug-resistant.


Assuntos
Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nanopartículas/química , Rifampina/farmacologia , Prata/química , Óxido de Zinco/química , Antituberculosos/química , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Macrófagos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/citologia , Rifampina/química , Relação Estrutura-Atividade , Óxido de Zinco/síntese química
8.
Nanotoxicology ; 10(9): 1351-62, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27441789

RESUMO

Inhaled nanoparticles (NPs) have high-deposition rates in the alveolar region of the lung but the effects of pulmonary surfactant (PS) on nanoparticle bioreactivity are unclear. Here, the impact of PS on the stability and dissolution of ZnO nanowires (ZnONWs) was investigated, and linked with their bioreactivity in vitro with human alveolar epithelial type 1-like cells (TT1). Pre-incubation of ZnONWs with Curosurf® (a natural porcine PS) decreased their dissolution at acidic pH, through the formation of a phospholipid corona. Confocal live cell microscopy confirmed that Curosurf® lowered intracellular dissolution, thus delaying the onset of cell death compared to bare ZnONWs. Despite reducing dissolution, Curosurf® significantly increased the uptake of ZnONWs within TT1 cells, ultimately increasing their toxicity after 24 h. Although serum improved ZnONW dispersion in suspension similar to Curosurf®, it had no effect on ZnONW internalization and toxicity, indicating a unique role of PS in promoting particle uptake. In the absence of PS, ZnONW length had no effect on dissolution kinetics or degree of cellular toxicity, indicating a less important role of length in determining ZnONW bioreactivity. This work provides unique findings on the effects of PS on the stability and toxicity of ZnONWs, which could be important in the study of pulmonary toxicity and epithelial-endothelial translocation of nanoparticles in general.


Assuntos
Produtos Biológicos/farmacologia , Células Epiteliais/efeitos dos fármacos , Nanofios/toxicidade , Fosfolipídeos/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Surfactantes Pulmonares/farmacologia , Óxido de Zinco/toxicidade , Animais , Contagem de Células , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Microscopia Confocal , Nanofios/química , Tamanho da Partícula , Fosfolipídeos/fisiologia , Surfactantes Pulmonares/metabolismo , Solubilidade , Propriedades de Superfície , Suínos , Óxido de Zinco/química , Óxido de Zinco/metabolismo
9.
Colloids Surf B Biointerfaces ; 145: 167-175, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27182651

RESUMO

Accompanying increased commercial applications and production of silver nanomaterials is an increased probability of human exposure, with inhalation a key route. Nanomaterials that deposit in the pulmonary alveolar region following inhalation will interact firstly with pulmonary surfactant before they interact with the alveolar epithelium. It is therefore critical to understand the effects of human pulmonary surfactant when evaluating the inhalation toxicity of silver nanoparticles. In this study, we evaluated the toxicity of AgNPs on human alveolar type-I-like epithelial (TT1) cells in the absence and presence of Curosurf(®) (a natural pulmonary surfactant substitute), hypothesising that the pulmonary surfactant would act to modify toxicity. We demonstrated that 20nm citrate-capped AgNPs induce toxicity in human alveolar type I-like epithelial cells and, in agreement with our hypothesis, that pulmonary surfactant acts to mitigate this toxicity, possibly through reducing AgNP dissolution into cytotoxic Ag(+) ions. For example, IL-6 and IL-8 release by TT1 cells significantly increased 10.7- and 35-fold, respectively (P<0.01), 24h after treatment with 25µg/ml AgNPs. In contrast, following pre-incubation of AgNPs with Curosurf(®), this effect was almost completely abolished. We further determined that the mechanism of this toxicity is likely associated with Ag(+) ion release and lysosomal disruption, but not with increased reactive oxygen species generation. This study provides a critical understanding of the toxicity of AgNPs in target human alveolar type-I-like epithelial cells and the role of pulmonary surfactant in mitigating this toxicity. The observations reported have important implications for the manufacture and application of AgNPs, in particular for applications involving use of aerosolised AgNPs.


Assuntos
Células Epiteliais/patologia , Nanopartículas Metálicas/toxicidade , Alvéolos Pulmonares/patologia , Surfactantes Pulmonares/farmacologia , Prata/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Íons , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Nanopartículas Metálicas/ultraestrutura , Espécies Reativas de Oxigênio/metabolismo
10.
Nanotoxicology ; 10(1): 118-27, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26152688

RESUMO

Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 µg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.


Assuntos
Imunidade Inata/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mecânica Respiratória/efeitos dos fármacos , Prata/toxicidade , Animais , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Respiração com Pressão Positiva , Povidona/farmacologia
11.
Hum Ecol Risk Assess ; 22(2): 558-579, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-38162291

RESUMO

Background: Electronic cigarettes, battery-powered nicotine delivery devices, have been increasingly used in the past decade. However, human health risks associated with E-vapor inhalation have not been fully characterized. Aims: This critical review aims at revisiting the building blocks of human health risk assessment, summarizing the state of the science, and identifying major knowledge gaps in exposure assessment and toxicity assessment. Approach: A qualitative research synthesis was conducted based on scientific findings reported to date in peer-reviewed publications and our own preliminary experimental results. Results: There are a limited number of studies across all lines of evidence on E-vapor exposure and the health impacts of E-vapor inhalation. E-cigarette may be as efficient as traditional cigarettes in nicotine delivery, especially for experienced users, and studies suggest lower emissions of air toxics from E-cigarette vapor and lower second- and third-hand vapor exposures. But some toxic emissions may surpass those of traditional cigarettes, especially under high voltage vaping conditions. Experimentally, E-vapor/E-liquid exposures reduce cell viability and promote pro-inflammatory cytokine release. User vulnerability to concomitant environmental agent exposures, such as viruses and bacteria, may potentially be increased. Conclusion: While evidence to date suggests that e-cigarettes release fewer toxins and carcinogens and compared to cigarettes, E-vapor is not safe and might adversely affect human immune functions. Major knowledge gaps hinder risk quantification and effective regulation of E-cigarette products including: 1) lack of long-term exposure studies; 2) lack of understanding of biological mechanisms associated with exposure; and 3) lack of integration of exposure and toxicity assessments.,. Better data are needed to inform human health risk assessments and to better understand the public health impact of E-vapor exposures.

12.
PLoS One ; 10(11): e0143077, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26580078

RESUMO

Exposure to silver nanoparticles (AgNP) used in consumer products carries potential health risks including increased susceptibility to infectious pathogens. Systematic assessments of antimicrobial macrophage immune responses in the context of AgNP exposure are important because uptake of AgNP by macrophages may lead to alterations of innate immune cell functions. In this study we examined the effects of exposure to AgNP with different particle sizes (20 and 110 nm diameters) and surface chemistry (citrate or polyvinlypyrrolidone capping) on cellular toxicity and innate immune responses against Mycobacterium tuberculosis (M.tb) by human monocyte-derived macrophages (MDM). Exposures of MDM to AgNP significantly reduced cellular viability, increased IL8 and decreased IL10 mRNA expression. Exposure of M.tb-infected MDM to AgNP suppressed M.tb-induced expression of IL1B, IL10, and TNFA mRNA. Furthermore, M.tb-induced IL-1ß, a cytokine critical for host resistance to M.tb, was inhibited by AgNP but not by carbon black particles indicating that the observed immunosuppressive effects of AgNP are particle specific. Suppressive effects of AgNP on the M.tb-induced host immune responses were in part due to AgNP-mediated interferences with the TLR signaling pathways that culminate in the activation of the transcription factor NF-κB. AgNP exposure suppressed M.tb-induced expression of a subset of NF-κB mediated genes (CSF2, CSF3, IFNG, IL1A, IL1B, IL6, IL10, TNFA, NFKB1A). In addition, AgNP exposure increased the expression of HSPA1A mRNA and the corresponding stress-induced Hsp72 protein. Up-regulation of Hsp72 by AgNP can suppress M.tb-induced NF-κB activation and host immune responses. The observed ability of AgNP to modulate infectious pathogen-induced immune responses has important public health implications.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mycobacterium tuberculosis/imunologia , Fagocitose/efeitos dos fármacos , Prata/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Citratos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Regulação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-1alfa/genética , Interleucina-1alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-8/genética , Interleucina-8/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Nanopartículas Metálicas/ultraestrutura , NF-kappa B/genética , NF-kappa B/imunologia , Tamanho da Partícula , Povidona/farmacologia , Cultura Primária de Células , Transdução de Sinais , Citrato de Sódio
13.
Nanoscale ; 7(23): 10398-409, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-25996248

RESUMO

Inhaled nanoparticles have a high deposition rate in the alveolar units of the deep lung. The alveolar epithelium is composed of type-I and type-II epithelial cells (ATI and ATII respectively) and is bathed in pulmonary surfactant. The effect of native human ATII cell secretions on nanoparticle toxicity is not known. We investigated the cellular uptake and toxicity of silver nanowires (AgNWs; 70 nm diameter, 1.5 µm length) with human ATI-like cells (TT1), in the absence or presence of Curosurf® (a natural porcine pulmonary surfactant with a low amount of protein) or harvested primary human ATII cell secretions (HAS; containing both the complete lipid as well as the full protein complement of human pulmonary surfactant i.e. SP-A, SP-B, SP-C and SP-D). We hypothesised that Curosurf® or HAS would confer improved protection for TT1 cells, limiting the toxicity of AgNWs. In agreement with our hypothesis, HAS reduced the inflammatory and reactive oxygen species (ROS)-generating potential of AgNWs with exposed TT1 cells. For example, IL-8 release and ROS generation was reduced by 38% and 29%, respectively, resulting in similar levels to that of the non-treated controls. However in contrast to our hypothesis, Curosurf® had no effect. We found a significant reduction in AgNW uptake by TT1 cells in the presence of HAS but not Curosurf. Furthermore, we show that the SP-A and SP-D are likely to be involved in this process as they were found to be specifically bound to the AgNWs. While ATI cells appear to be protected by HAS, evidence suggested that ATII cells, despite no uptake, were vulnerable to AgNW exposure (indicated by increased IL-8 release and ROS generation and decreased intracellular SP-A levels one day post-exposure). This study provides unique findings that may be important for the study of lung epithelial-endothelial translocation of nanoparticles in general and associated toxicity within the alveolar unit.


Assuntos
Citocinas/imunologia , Células Epiteliais/imunologia , Nanofios/toxicidade , Alvéolos Pulmonares/imunologia , Surfactantes Pulmonares/química , Prata/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Teste de Materiais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanofios/química , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/patologia , Prata/química
14.
Infect Immun ; 83(6): 2507-17, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25847963

RESUMO

Inhalation exposure to indoor air pollutants and cigarette smoke increases the risk of developing tuberculosis (TB). Whether exposure to ambient air pollution particulate matter (PM) alters protective human host immune responses against Mycobacterium tuberculosis has been little studied. Here, we examined the effect of PM from Iztapalapa, a municipality of Mexico City, with aerodynamic diameters below 2.5 µm (PM2.5) and 10 µm (PM10) on innate antimycobacterial immune responses in human alveolar type II epithelial cells of the A549 cell line. Exposure to PM2.5 or PM10 deregulated the ability of the A549 cells to express the antimicrobial peptides human ß-defensin 2 (HBD-2) and HBD-3 upon infection with M. tuberculosis and increased intracellular M. tuberculosis growth (as measured by CFU count). The observed modulation of antibacterial responsiveness by PM exposure was associated with the induction of senescence in PM-exposed A549 cells and was unrelated to PM-mediated loss of cell viability. Thus, the induction of senescence and downregulation of HBD-2 and HBD-3 expression in respiratory PM-exposed epithelial cells leading to enhanced M. tuberculosis growth represent mechanisms by which exposure to air pollution PM may increase the risk of M. tuberculosis infection and the development of TB.


Assuntos
Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Mycobacterium tuberculosis/fisiologia , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Poluentes Atmosféricos/química , Linhagem Celular Tumoral , DNA Complementar/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata , México , Material Particulado/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , beta-Defensinas/genética , beta-Defensinas/metabolismo
15.
Hum Vaccin Immunother ; 10(8): 2199-210, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25424923

RESUMO

Bacille Calmette-Guérin (BCG), the only licensed vaccine for the prevention of tuberculosis (TB), provides only limited protection against certain forms of Mycobacterium tuberculosis (Mtb) infection. While infection with Mtb can be treated with antibiotics, the therapy is expensive, toxic, and requires several months for treatment. In addition, the emergence of drug resistant strains limits the impact of antibiotics and underlines the importance of developing a more effective vaccine to control this disease. Given that pulmonary TB is the most common form of the disease, a vaccine capable of inducing lung-resident immunity may be advantageous for combating this infection. New advances in pulmonary delivery make this route of vaccination feasible and affordable. Here, we evaluate the safety and immunogenicity of an aerosolized Ad35-based vaccine, AERAS-402, delivered to the lungs in nonhuman primates as part of a GLP acute and chronic toxicology and safety study. In this study, animals received three high doses (1 x 10(11) vp) of AERAS-402 by inhalation via a nebulizer at 1-week intervals. Aerosol delivery of AERAS-402 resulted in an increase in relative lung weights as well as microscopic findings in the lungs, mediastinal lymph nodes, bronchus-associated lymphatic tissue, and the naso-oropharynx that were consistent with the induction of an immune response during the acute phase. These findings resolved by the chronic phase and were considered to be non-adverse. Furthermore, we observed transient vaccine-specific immune responses in the peripheral blood as well as sustained high-level polyfunctional CD4(+) and CD8(+) T cell responses in the bronchoalveolar lavage fluid of vaccinated nonhuman primates. The data suggest that pulmonary delivery of Ad35-based vaccines can be safe and can induce potent lung-resident immunity.


Assuntos
Aerossóis/administração & dosagem , Aerossóis/efeitos adversos , Pulmão/imunologia , Linfócitos T/imunologia , Vacinas contra a Tuberculose/efeitos adversos , Vacinas contra a Tuberculose/imunologia , Tuberculose/prevenção & controle , Adenovírus Humanos/genética , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Portadores de Fármacos/administração & dosagem , Feminino , Macaca mulatta , Masculino , Resultado do Tratamento , Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas de DNA
16.
Environ Sci Technol ; 47(23): 13813-21, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24160871

RESUMO

There is a growing concern about the potential adverse effects on human health upon exposure to engineered silver nanomaterials (particles, wires, and plates). However, the majority of studies testing the toxicity of silver nanomaterials have examined nominally "as-synthesized" materials without considering the fate of the materials in biologically relevant fluids. Here, in-house silver nanowires (AgNWs) were prepared by a modified polyol process and were incubated in three cell culture media (DMEM, RPMI-1640, and DCCM-1) to examine the impact of AgNW-medium interactions on the physicochemical properties of the AgNWs. High-resolution analytical transmission electron microscopy revealed that Ag2S crystals form on the surface of AgNWs within 1 h of incubation in DCCM-1. In contrast, the incubation of AgNWs in RPMI-1640 or DMEM did not lead to sulfidation. When the DCCM-1 cell culture medium was separated into its small molecule solutes and salts and protein components, the AgNWs were found to sulfidize in the fraction containing small molecule solutes and salts but not in the fraction containing the protein component of the media. Further investigation showed the AgNWs did not readily sulfidize in the presence of isolated sulfur containing amino acids or proteins, such as cysteine or bovine serum albumin (BSA). The results demonstrate that the AgNWs can be transformed by the media before and during the incubation with cells, and therefore, the effects of cell culture media must be considered in the analysis of toxicity assays. Appropriate media and material controls must be in place to allow accurate predictions about the toxicity and, ultimately, the health risk of this commercially relevant class of nanomaterial.


Assuntos
Meios de Cultura/farmacologia , Microscopia Eletrônica de Transmissão/métodos , Nanofios/química , Prata/química , Cinética , Nanofios/ultraestrutura , Temperatura
17.
Clin Vaccine Immunol ; 20(11): 1736-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24027260

RESUMO

A major hypothesis regarding the cause of chronic fatigue syndrome (CFS) is immune dysregulation, thought to be reflected in upregulated proinflammatory cytokines leading to the symptoms that are characteristic of this illness. Because the symptoms worsen with physical exertion or sleep loss, we hypothesized that we could use these stressors to magnify the underlying potential pathogenic abnormalities in the cytokine systems of people with CFS. We conducted repeat blood sampling for cytokine levels from healthy subjects and CFS patients during both postexercise and total sleep deprivation nights and assayed for protein levels in the blood samples, mRNA activity in peripheral blood lymphocytes (PBLs), and function in resting and stimulated PBLs. We found that these environmental manipulations did not produce clinically significant upregulation of proinflammatory cytokines. These data do not support an important role of immune dysregulation in the genesis of stress-induced worsening of CFS.


Assuntos
Citocinas/sangue , Exercício Físico , Síndrome de Fadiga Crônica/imunologia , Privação do Sono/imunologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade
18.
Nanoscale ; 5(20): 9839-47, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23970174

RESUMO

Silver nanowires (AgNWs) are being developed for use in optoelectronics. However before widespread usage, it is crucial to determine their potential effects on human health. It is accepted that Ag nanoparticles (AgNPs) exert toxic effects by releasing Ag(+) ions, but much less is known about whether Ag(+) reacts with compounds, or any downstream bioactive effects of transformed AgNPs. Analytical high-resolution transmission electron microscopy has been employed to elucidate cellular uptake and reactivity of AgNWs inside human alveolar epithelial type 1-like cells. AgNWs were observed in the cytoplasm and membrane-bound vesicles, and precipitation of Ag2S within the cell occurred after 1 h exposure. Cell viability studies showed no evidence of cytotoxicity and reactive oxygen species were not observed on exposure of cells to AgNWs. We suggest that Ag2S formation acts as a 'trap' for free Ag(+), significantly limiting short-term toxicological effects - with important consequences for the safety of Ag-nanomaterials to human health.


Assuntos
Nanofios/química , Prata/química , Sulfetos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Eletrônica , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Humanos , Inativação Metabólica , Microscopia Eletrônica de Transmissão , Nanofios/toxicidade , Espécies Reativas de Oxigênio/metabolismo
20.
Clin Vaccine Immunol ; 17(4): 582-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181767

RESUMO

The symptoms of chronic fatigue syndrome (CFS) are consistent with cytokine dysregulation. This has led to the hypothesis of immune dysregulation as the cause of this illness. To further test this hypothesis, we did repeated blood sampling for cytokines while patients and matched healthy controls slept in the sleep lab. Because no one method for assaying cytokines is acknowledged to be better than another, we assayed for protein in serum, message in peripheral blood lymphocytes (PBLs), and function in resting and stimulated PBLs. We found no evidence of proinflammatory cytokine upregulation. Instead, in line with some of our earlier studies, we did find some evidence to support a role for an increase in interleukin-10, an anti-inflammatory cytokine. Although the changes were small, they may contribute to the common complaint in CFS patients of disrupted sleep.


Assuntos
Citocinas/análise , Síndrome de Fadiga Crônica/complicações , Síndrome de Fadiga Crônica/imunologia , Fibromialgia/patologia , Leucócitos Mononucleares/imunologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA