Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Virol ; 83(12): 6269-78, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19339345

RESUMO

The parvovirus adeno-associated virus (AAV) contains a small single-stranded DNA genome with inverted terminal repeats that form hairpin structures. In order to propagate, AAV relies on the cellular replication machinery together with functions supplied by coinfecting helper viruses such as adenovirus (Ad). Here, we examined the host cell response to AAV replication in the context of Ad or Ad helper proteins. We show that AAV and Ad coinfection activates a DNA damage response (DDR) that is distinct from that seen during Ad or AAV infection alone. The DDR was also triggered when AAV replicated in the presence of minimal Ad helper proteins. We detected autophosphorylation of the kinases ataxia telangiectasia mutated (ATM) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and signaling to downstream targets SMC1, Chk1, Chk2, H2AX, and XRCC4 and multiple sites on RPA32. The Mre11 complex was not required for activation of the DDR to AAV infection. Additionally, we found that DNA-PKcs was the primary mediator of damage signaling in response to AAV replication. Immunofluorescence revealed that some activated damage proteins were found in a pan-nuclear pattern (phosphorylated ATM, SMC1, and H2AX), while others such as DNA-PK components (DNA-PKcs, Ku70, and Ku86) and RPA32 accumulated at AAV replication centers. Although expression of the large viral Rep proteins contributed to some damage signaling, we observed that the full response required replication of the AAV genome. Our results demonstrate that AAV replication in the presence of Ad helper functions elicits a unique damage response controlled by DNA-PK.


Assuntos
Dano ao DNA , Proteína Quinase Ativada por DNA/metabolismo , Dependovirus/fisiologia , Transdução de Sinais , Replicação Viral , Adenoviridae/genética , Adenoviridae/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , DNA Viral/genética , Proteínas de Ligação a DNA/metabolismo , Dependovirus/genética , Células HeLa , Humanos , Infecções por Parvoviridae/virologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
2.
J Virol ; 82(18): 9043-55, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18614635

RESUMO

The E1b55K and E4orf6 proteins of adenovirus type 5 (Ad5) assemble into a complex together with cellular proteins including cullin 5, elongins B and C, and Rbx1. This complex possesses E3 ubiquitin ligase activity and targets cellular proteins for proteasome-mediated degradation. The ligase activity has been suggested to be responsible for all functions of E1b55K/E4orf6, including promoting efficient viral DNA replication, preventing a cellular DNA damage response, and stimulating late viral mRNA nuclear export and late protein synthesis. The known cellular substrates for degradation by E1b55K/E4orf6 are the Mre11/Rad50/Nbs1 DNA repair complex, the tumor suppressor p53, and DNA ligase IV. Here we show that the degradation of individual targets can occur independently of other substrates. Furthermore, we identify separation-of-function mutant forms of E1b55K that can distinguish substrates for binding and degradation. Our results identify distinct regions of E1b55K that are involved in substrate recognition but also imply that there are additional requirements beyond protein association. These mutant proteins will facilitate the determination of the relevance of specific substrates to the functions of E1b55K in promoting infection and inactivating host defenses.


Assuntos
Proteínas E1B de Adenovirus/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Adenovírus Humanos/metabolismo , Proteínas/metabolismo , Proteínas E1B de Adenovirus/genética , Proteínas E4 de Adenovirus/genética , Adenovírus Humanos/genética , Adenovírus Humanos/patogenicidade , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Genes Supressores de Tumor , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Mutação , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Especificidade por Substrato , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Virais/metabolismo
3.
J Virol ; 82(17): 8362-72, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18562516

RESUMO

Adenoviruses (Ad) with the early region E4 deleted (E4-deleted virus) are defective for DNA replication and late protein synthesis. Infection with E4-deleted viruses results in activation of a DNA damage response, accumulation of cellular repair factors in foci at viral replication centers, and joining together of viral genomes into concatemers. The cellular DNA repair complex composed of Mre11, Rad50, and Nbs1 (MRN) is required for concatemer formation and full activation of damage signaling through the protein kinases Ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR). The E4orf3 and E4orf6 proteins expressed from the E4 region of Ad type 5 (Ad5) inactivate the MRN complex by degradation and mislocalization, and prevent the DNA damage response. Here we investigated individual contributions of the MRN complex, concatemer formation, and damage signaling to viral DNA replication during infection with E4-deleted virus. Using virus mutants, short hairpin RNA knockdown and hypomorphic cell lines, we show that inactivation of MRN results in increased viral replication. We demonstrate that defective replication in the absence of E4 is not due to concatemer formation or DNA damage signaling. The C terminus of Nbs1 is required for the inhibition of Ad DNA replication and recruitment of MRN to viral replication centers. We identified regions of Nbs1 that are differentially required for concatemer formation and inhibition of Ad DNA replication. These results demonstrate that targeting of the MRN complex explains the redundant functions of E4orf3 and E4orf6 in promoting Ad DNA replication. Understanding how MRN impacts the adenoviral life cycle will provide insights into the functions of this DNA damage sensor.


Assuntos
Adenovírus Humanos/classificação , Adenovírus Humanos/patogenicidade , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Linhagem Celular , DNA Viral/genética , Células HeLa , Humanos , Rim/citologia , Mutação , Transfecção
4.
J Cell Sci ; 121(Pt 3): 349-57, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18216333

RESUMO

Despite increasing utilization of rAAV vectors in gene transfer applications, several aspects of the biology of these vectors remain poorly understood. We have visualized the conversion of rAAV vector genomes from single-stranded to double-stranded DNA in real time. We report that rAAV DNA accumulates into discrete foci inside the nucleus. These rAAV foci are defined in number, increase in size over time after transduction, are relatively immobile, and their presence correlates with the efficiency of cell transduction. These structures overlap with, or lie in close proximity to, the foci in which proteins of the MRN (MRE11-RAD50-NBS1) complex as well as the MDC1 protein accumulate after DNA damage. The downregulation of MRN or MDC1 by RNA interference markedly increases both the formation of rAAV foci and the extent of rAAV transduction. Chromatin immunoprecipitation experiments indicate that the MRE11 protein associates with the incoming rAAV genomes and that this association decreases upon cell treatment with DNA damaging agents. These findings are consistent with a model whereby cellular DNA-damage-response proteins restrict rAAV transduction by negatively regulating rAAV genome processing.


Assuntos
Dependovirus/genética , Vetores Genéticos , Genoma Viral , Hidrolases Anidrido Ácido , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Bases , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Dano ao DNA , Reparo do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dependovirus/metabolismo , Técnicas de Transferência de Genes , Células HeLa , Humanos , Óperon Lac , Proteína Homóloga a MRE11 , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Recombinação Genética , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismo
5.
J Virol ; 81(23): 12936-45, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17898048

RESUMO

Adeno-associated virus (AAV) is a parvovirus with a small single-stranded DNA genome that relies on cellular replication machinery together with functions supplied by coinfecting helper viruses. The impact of host factors on AAV infection is not well understood. We explored the connection between AAV helper functions supplied by adenovirus and cellular DNA repair proteins. The adenoviral E1b55K/E4orf6 proteins induce degradation of the cellular Mre11 repair complex (MRN) to promote productive adenovirus infection. These viral proteins also augment recombinant AAV transduction and provide crucial helper functions for wild-type AAV replication. Here, we show that MRN poses a barrier to AAV and that the helper function provided by E1b55K/E4orf6 involves MRN degradation. Using a fluorescent method to visualize the viral genome, we show an effect at the viral DNA level. MRN components accumulate at AAV replication centers and recognize the viral inverted terminal repeats. Together, our data suggest that AAV is targeted by MRN and has evolved to exploit adenoviral proteins that degrade these cellular factors.


Assuntos
Adenoviridae/imunologia , Proteínas de Ciclo Celular/imunologia , Enzimas Reparadoras do DNA/imunologia , Proteínas de Ligação a DNA/imunologia , Proteínas Nucleares/imunologia , Transdução Genética , Replicação Viral/fisiologia , Hidrolases Anidrido Ácido , Adenoviridae/fisiologia , Proteínas E1B de Adenovirus/fisiologia , Proteínas E4 de Adenovirus/fisiologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/metabolismo , Ligação Proteica , Replicação Viral/imunologia
6.
DNA Repair (Amst) ; 3(8-9): 1165-73, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15279805

RESUMO

Mammalian cells are equipped with complex machinery to monitor and repair damaged DNA. In addition to responding to breaks in cellular DNA, recent studies have revealed that the DNA repair machinery also recognizes viral genetic material. We review some examples that highlight the different strategies that viruses have developed to interact with the host DNA repair apparatus. While adenovirus (Ad) inactivates the host machinery to prevent signaling and concatemerization of the viral genome, other viruses may utilize DNA repair to their own advantage. Viral interactions with the repair machinery can also have detrimental consequences for the host cells and their ability to maintain the integrity of the host genome. Exploring the interactions between viruses and the host DNA repair machinery has revealed novel host responses to virus infections and has provided new tools to study the DNA damage response.


Assuntos
Dano ao DNA , Reparo do DNA , Vírus/metabolismo , Adenoviridae/metabolismo , Animais , Genoma Viral , Herpesviridae/genética , Humanos , Parvovirus/genética , Retroviridae/genética , Transdução de Sinais
7.
EMBO J ; 22(24): 6610-20, 2003 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-14657032

RESUMO

The maintenance of genome integrity requires a rapid and specific response to many types of DNA damage. The conserved and related PI3-like protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate signal transduction pathways in response to genomic insults, such as DNA double-strand breaks (DSBs). It is unclear which proteins recognize DSBs and activate these pathways, but the Mre11/Rad50/NBS1 complex has been suggested to act as a damage sensor. Here we show that infection with an adenovirus lacking the E4 region also induces a cellular DNA damage response, with activation of ATM and ATR. Wild-type virus blocks this signaling through degradation of the Mre11 complex by the viral E1b55K/E4orf6 proteins. Using these viral proteins, we show that the Mre11 complex is required for both ATM activation and the ATM-dependent G(2)/M checkpoint in response to DSBs. These results demonstrate that the Mre11 complex can function as a damage sensor upstream of ATM/ATR signaling in mammalian cells.


Assuntos
Adenovírus Humanos/fisiologia , Proteínas de Ciclo Celular , Ciclo Celular/fisiologia , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Vírus Defeituosos/genética , Proteínas Serina-Treonina Quinases/genética , Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Fase G2 , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Mitose , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Proteínas Recombinantes/metabolismo , Transdução de Sinais/genética , Proteínas Supressoras de Tumor , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA