Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 12(6): 2174-2186, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34704401

RESUMO

BACKGROUND: Skeletal muscle atrophy is a debilitating complication of many chronic diseases, disuse conditions, and ageing. Genome-wide gene expression analyses have identified that elevated levels of microRNAs encoded by the H19X locus are among the most significant changes in skeletal muscles in a wide scope of human cachectic conditions. We have previously reported that the H19X locus is important for the establishment of striated muscle fate during embryogenesis. However, the role of H19X-encoded microRNAs in regulating skeletal mass in adults is unknown. METHODS: We have created a transgenic mouse strain in which ectopic expression of miR-322/miR-503 is driven by the skeletal muscle-specific muscle creatine kinase promoter. We also used an H19X mutant mouse strain in which transcription from the locus is interrupted by a gene trap. Animal phenotypes were analysed by standard histological methods. Underlying mechanisms were explored by using transcriptome profiling and validated in the two animal models and cultured myotubes. RESULTS: Our results demonstrate that the levels of H19X microRNAs are inversely related to postnatal skeletal muscle growth. Targeted overexpression of miR-322/miR-503 impeded skeletal muscle growth. The weight of gastrocnemius muscles of transgenic mice was only 54.5% of the counterparts of wild-type littermates. By contrast, interruption of transcription from the H19X locus stimulates postnatal muscle growth by 14.4-14.9% and attenuates the loss of skeletal muscle mass in response to starvation by 12.8-21.0%. Impeded muscle growth was not caused by impaired IGF1/AKT/mTOR signalling or a hyperactive ubiquitin-proteasome system, instead accompanied by markedly dropped abundance of translation initiation factors in transgenic mice. miR-322/miR-503 directly targets eIF4E, eIF4G1, eIF4B, eIF2B5, and eIF3M. CONCLUSIONS: Our study illustrates a novel pathway wherein H19X microRNAs regulate skeletal muscle growth and atrophy through regulating the abundance of translation initiation factors, thereby protein synthesis. The study highlights how translation initiation factors lie at the crux of multiple signalling pathways that control skeletal muscle mass.


Assuntos
MicroRNAs , Atrofia Muscular , Animais , Camundongos , MicroRNAs/genética , Fibras Musculares Esqueléticas , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Fatores de Iniciação de Peptídeos
2.
Cardiovasc Eng Technol ; 11(5): 587-604, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32710379

RESUMO

PURPOSE: The objective of this study was to reprogram human adipogenic mesenchymal stem cells (hADMSCs) to form Purkinje cells and to use the reprogrammed Purkinje cells to bioprint Purkinje networks. METHODS: hADMSCs were reprogrammed to form Purkinje cells using a multi-step process using transcription factors ETS2 and MESP1 to first form cardiac progenitor stem cells followed by SHOX2 and TBX3 to form Purkinje cells. A novel bioprinting method was developed based on Pluronic acid as the sacrificial material and type I collagen as the structural material. The reprogrammed Purkinje cells were used in conjunction with the novel bioprinting method to bioprint Purkinje networks. Printed constructs were evaluated for retention of functional protein connexin 40 (Cx40) and ability to undergo membrane potential changes in response to physiologic stimulus. RESULTS: hADMSCs were successfully reprogrammed to form Purkinje cells based on the expression pattern of IRX3, IRX5, SEMA and SCN10. Reprogrammed purkinje cells were incorporated into a collagen type-1 bioink and the left ventricular Purkinje network was printed using anatomical images of the bovine Purkinje system as reference. Optimization studies demonstrated that 1.8 mg/mL type-I collagen at a seeding density of 300,000 cells per 200 µL resulted in the most functional bioprinted Purkinje networks. Furthermore, bioprinted Purkinje networks formed continuous syncytium, retained expression of vital functional gap junction protein Cx40 post-print, and exhibited membrane potential changes in response to electric stimulation and acetylcholine evaluated by DiBAC4(5), an electrically responsive dye. CONCLUSION: Based on the results of this study, hADMSCs were successfully reprogrammed to form Purkinje cells and bioprinted to form Purkinje networks.


Assuntos
Adipogenia , Bioimpressão , Técnicas de Reprogramação Celular , Reprogramação Celular , Células-Tronco Mesenquimais/fisiologia , Impressão Tridimensional , Ramos Subendocárdicos/fisiologia , Comunicação Celular , Células Cultivadas , Humanos , Fenótipo , Ramos Subendocárdicos/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Cardiovasc Eng Technol ; 11(2): 205-218, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31916039

RESUMO

PURPOSE: The objective of this study was to bioengineer 3D patches from cardiac myocytes that have been reprogrammed from human adipogenic mesenchymal stem cells (hADMSCs). METHODS: Human adipogenic mesenchymal stem cells (hADMSCs) were reprogrammed to form cardiac myocytes using transcription factors ETS2 and MESP1. Reprogrammed cardiac myocytes were cultured in a fibrin gel to bioengineer 3D patch patches. The effect of initial plating density (1-25 million cells per patch), time (28-day culture period) and treatment with 1 µM isoproterenol and 1 µM epinephrine were evaluated. RESULTS: 3D patches were fabricated using cardiac myocytes that have been reprogrammed from hADMSCs. Based on optimization studies, it was determined that 10 million cells were needed to bioengineer a single patch, that measured 2 × 2 cm2. Furthermore, 3D patches fabricated 10 million cells were stable in culture for up to 28 days. Treatment of 3D patches with 1 µM isoproterenol and 1 µM epinephrine resulted in an increase in the electrical properties, as measured by electrical impulse amplitude and frequency. An increase in the expression of mTOR, KCNV1, GJA5, KCNJ16, CTNNT2, KCNV2, MYO3, FOXO1 and KCND2 was noted in response to treatment of 3D patches with isoproterenol and epinephrine. CONCLUSION: Based on the results of this study, there is evidence to support the successful fabrication of a highly functional 3D patches with measurable electrical activity using cardiac myocytes reprogrammed from hADMSCs. 3D patches fabricated using optimal conductions described in this study can be used to improve the functional properties of failing hearts. Predominantly, in case of the infarcted hearts with partial loss of electrical activity, the electrical properties of the 3D patches may restore the electrical activity of the heart.


Assuntos
Adipogenia , Técnicas de Reprogramação Celular , Reprogramação Celular , Insuficiência Cardíaca/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Miócitos Cardíacos/transplante , Engenharia Tecidual , Agonistas Adrenérgicos/farmacologia , Células Cultivadas , Condutividade Elétrica , Epinefrina/farmacologia , Fibrina/metabolismo , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Isoproterenol/farmacologia , Potenciais da Membrana , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Tempo
4.
J Tissue Eng Regen Med ; 14(2): 306-318, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821703

RESUMO

Clinical trials using human adipogenic mesenchymal stem cells (hAdMSCs) for the treatment of cardiac diseases have shown improvement in cardiac function and were proven safe. However, hAdMSCs do not convert efficiently into cardiomyocytes (CMs) or vasculature. Thus, reprogramming hAdMSCs into myocyte progenitors may fare better in future investigations. To reprogramme hAdMSCs into electrically conductive cardiac progenitor cells, we pioneered a three-step reprogramming strategy that uses proven MESP1/ETS2 transcription factors, ß-adrenergic and hypoxic signalling induced in three-dimensional (3D) cardiospheres. In Stage 1, ETS2 and MESP1 activated NNKX2.5, TBX5, MEF2C, dHAND, and GATA4 during the conversion of hAdMSCs into cardiac progenitor cells. Next, in Stage 2, ß2AR activation repositioned cardiac progenitors into de novo immature conductive cardiac cells, along with the appearance of RYR2, CAV2.1, CAV3.1, NAV1.5, SERCA2, and CX45 gene transcripts and displayed action potentials. In Stage 3, electrical conduction that was fostered by 3D cardiospheres formed in a Synthecon®, Inc. rotating bioreactor induced the appearance of hypoxic genes: HIF-1α/ß, PCG 1α/ß, and NOS2, which coincided with the robust activation of adult contractile genes including MLC2v, TNNT2, and TNNI3, ion channel genes, and the appearance of hyperpolarization-activated and cyclic nucleotide-gated channels (HCN1-4). Conduction velocities doubled to ~200 mm/s after hypoxia and doubled yet again after dissociation of the 3D cell clusters to ~400 mm/s. By comparison, normal conduction velocities within working ventricular myocytes in the whole heart range from 0.5 to 1 m/s. Epinephrine stimulation of stage 3 cardiac cells in patches resulted in an increase in amplitude of the electrical wave, indicative of conductive cardiac cells. Our efficient protocol that converted hAdMSCs into highly conductive cardiac progenitors demonstrated the potential utilization of stage 3 cells for tissue engineering applications for cardiac repair.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Receptores Adrenérgicos beta/metabolismo , Adipogenia , Adrenérgicos , Reatores Biológicos , Diferenciação Celular/fisiologia , Proliferação de Células , Condutividade Elétrica , Epinefrina/farmacologia , Humanos , Hipóxia , Cinética , Miócitos Cardíacos/citologia , Transdução de Sinais , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Fatores de Transcrição/metabolismo
5.
EBioMedicine ; 50: 55-66, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31761621

RESUMO

BACKGROUND: Mesoderm Posterior 1 (MESP1) belongs to the family of basic helix-loop-helix transcription factors. It is a master regulator of mesendoderm development, leading to formation of organs such as heart and lung. However, its role in adult pathophysiology remains unknown. Here, we report for the first time a previously-unknown association of MESP1 with non-small cell lung cancer (NSCLC). METHODS: MESP1 mRNA and protein levels were measured in NSCLC-derived cells by qPCR and immunoblotting respectively. Colony formation assay, colorimetric cell proliferation assay and soft agar colony formation assays were used to assess the effects of MESP1 knockdown and overexpression in vitro. RNA-sequencing and chromatin immunoprecipitation (ChIP)-qPCR were used to determine direct target genes of MESP1. Subcutaneous injection of MESP1-depleted NSCLC cells in immuno-compromised mice was done to study the effects of MESP1 mediated tumor formation in vivo. FINDINGS: We found that MESP1 expression correlates with poor prognosis in NSCLC patients, and is critical for proliferation and survival of NSCLC-derived cells, thus implicating MESP1 as a lung cancer oncogene. Ectopic MESP1 expression cooperates with loss of tumor suppressor ARF to transform murine fibroblasts. Xenografts from MESP1-depleted cells showed decreased tumor growth in vivo. Global transcriptome analysis revealed a MESP1 DNA-binding-dependent gene signature associated with various hallmarks of cancer, suggesting that transcription activity of MESP1 is most likely responsible for its oncogenic abilities. INTERPRETATION: Our study demonstrates MESP1 as a previously-unknown lineage-survival oncogene in NSCLC which may serve as a potential prognostic marker and therapeutic target for lung cancer in the future.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Transformação Celular Neoplásica/genética , Regulação da Expressão Gênica , Neoplasias Pulmonares/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos
7.
Fundam Clin Pharmacol ; 33(1): 25-30, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29959870

RESUMO

Inbred mouse strains are the most widely used mammalian model organism in biomedical research owing to ease of genetic manipulation and short lifespan; however, each inbred strain possesses a unique repertoire of deleterious homozygous alleles that can make a specific strain more susceptible to a particular disease. In the current study, we report dystrophic cardiac calcinosis (DCC) in C.B-17 SCID male mice at 10 weeks of age with no significant change in cardiac function. Acquisition of DCC was characterized by myocardial injury, fibrosis, calcification, and necrosis of the tissue. At 10 weeks of age, 38% of the C.B-17 SCID mice from two different commercial colonies exhibited significant calcinosis on the ventricular epicardium, predominantly on the right ventricle. The frequency of calcinosis was more than 50% for mice obtained from Taconic's Cambridge City colony and 25% for mice obtained from Taconic's German Town colony. Interestingly, the DCC phenotype did not affect cardiac function at 10 weeks of age. No differences in echocardiography or electrocardiography were observed between the calcinotic and non-calcinotic mice from either colony. Our findings suggest that C.B-17 SCID mice exhibit DCC as early as 10 weeks of age with no significant impact on cardiac function. This strain of mice should be cautiously considered for the study of cardiac physiology.


Assuntos
Calcinose/patologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Pericárdio/patologia , Animais , Ecocardiografia/métodos , Eletrocardiografia/métodos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos SCID , Fenótipo
8.
Sci Rep ; 6: 31457, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27538477

RESUMO

Mesp1 directs multipotential cardiovascular cell fates, even though it's transiently induced prior to the appearance of the cardiac progenitor program. Tracing Mesp1-expressing cells and their progeny allows isolation and characterization of the earliest cardiovascular progenitor cells. Studying the biology of Mesp1-CPCs in cell culture and ischemic disease models is an important initial step toward using them for heart disease treatment. Because of Mesp1's transitory nature, Mesp1-CPC lineages were traced by following EYFP expression in murine Mesp1(Cre/+); Rosa26(EYFP/+) ES cells. We captured EYFP+ cells that strongly expressed cardiac mesoderm markers and cardiac transcription factors, but not pluripotent or nascent mesoderm markers. BMP2/4 treatment led to the expansion of EYFP+ cells, while Wnt3a and Activin were marginally effective. BMP2/4 exposure readily led EYFP+ cells to endothelial and smooth muscle cells, but inhibition of the canonical Wnt signaling was required to enter the cardiomyocyte fate. Injected mouse pre-contractile Mesp1-EYFP+ CPCs improved the survivability of injured mice and restored the functional performance of infarcted hearts for at least 3 months. Mesp1-EYFP+ cells are bona fide CPCs and they integrated well in infarcted hearts and emerged de novo into terminally differentiated cardiac myocytes, smooth muscle and vascular endothelial cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Infarto do Miocárdio/terapia , Transplante de Células-Tronco , Células-Tronco/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Coração/diagnóstico por imagem , Masculino , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Camundongos SCID , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Transcriptoma , Proteína Wnt3A/metabolismo
9.
Stem Cells ; 32(6): 1515-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24585688

RESUMO

Cardiac muscle differentiation in vivo is guided by sequential growth factor signals, including endoderm-derived diffusible factors, impinging on cardiogenic genes in the developing mesoderm. Previously, by RNA interference in AB2.2 mouse embryonic stem cells (mESCs), we identified the endodermal transcription factor Sox17 as essential for Mesp1 induction in primitive mesoderm and subsequent cardiac muscle differentiation. However, downstream effectors of Sox17 remained to be proven functionally. In this study, we used genome-wide profiling of Sox17-dependent genes in AB2.2 cells, RNA interference, chromatin immunoprecipitation, and luciferase reporter genes to dissect this pathway. Sox17 was required not only for Hhex (a second endodermal transcription factor) but also for Cer1, a growth factor inhibitor from endoderm that, like Hhex, controls mesoderm patterning in Xenopus toward a cardiac fate. Suppressing Hhex or Cer1 blocked cardiac myogenesis, although at a later stage than induction of Mesp1/2. Hhex was required but not sufficient for Cer1 expression. Over-expression of Sox17 induced endogenous Cer1 and sequence-specific transcription of a Cer1 reporter gene. Forced expression of Cer1 was sufficient to rescue cardiac differentiation in Hhex-deficient cells. Thus, Hhex and Cer1 are indispensable components of the Sox17 pathway for cardiopoiesis in mESCs, acting at a stage downstream from Mesp1/2.


Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas HMGB/metabolismo , Proteínas de Homeodomínio/metabolismo , Mesoderma/embriologia , Miocárdio/metabolismo , Proteínas/metabolismo , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Padronização Corporal/efeitos dos fármacos , Diferenciação Celular/genética , Citocinas , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Subunidades beta de Inibinas/metabolismo , Mesoderma/citologia , Camundongos , Modelos Biológicos , Desenvolvimento Muscular/genética , Miocárdio/citologia , Proteína Nodal/metabolismo , Ligação Proteica/genética , Transdução de Sinais/genética
10.
PLoS Genet ; 9(9): e1003785, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24068957

RESUMO

Among the most common human congenital anomalies, cleft lip and palate (CL/P) affects up to 1 in 700 live births. MicroRNA (miR)s are small, non-coding RNAs that repress gene expression post-transcriptionally. The miR-17-92 cluster encodes six miRs that have been implicated in human cancers and heart development. We discovered that miR-17-92 mutant embryos had severe craniofacial phenotypes, including incompletely penetrant CL/P and mandibular hypoplasia. Embryos that were compound mutant for miR-17-92 and the related miR-106b-25 cluster had completely penetrant CL/P. Expression of Tbx1 and Tbx3, the DiGeorge/velo-cardio-facial (DGS) and Ulnar-mammary syndrome (UMS) disease genes, was expanded in miR-17-92 mutant craniofacial structures. Both Tbx1 and Tbx3 had functional miR seed sequences that mediated gene repression. Analysis of miR-17-92 regulatory regions uncovered conserved and functional AP-2α recognition elements that directed miR-17-92 expression. Together, our data indicate that miR-17-92 modulates expression of critical T-box transcriptional regulators during midface development and is itself a target of Bmp-signaling and the craniofacial pioneer factor AP-2α. Our data are the first genetic evidence that an individual miR or miR cluster is functionally important in mammalian CL/P.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , MicroRNAs/genética , Fator de Transcrição AP-2/genética , Animais , Sequência de Bases , Fenda Labial/patologia , Fissura Palatina/patologia , Modelos Animais de Doenças , Embrião de Mamíferos/patologia , Regulação da Expressão Gênica , Humanos , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais , Proteínas com Domínio T/genética , Fator de Transcrição AP-2/metabolismo
11.
Stem Cells ; 31(10): 2279-85, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23818299

RESUMO

Serum response factor (SRF) wields potent gene silencing activity through its regulation over numerous microRNAs (miRs). Here, SRF directs embryonic stem cell (ESC) progenitor cell lineage specification in part by silencing genes through miR-210. Viral expression of miR-210 in murine ESCs-derived embryoid bodies (EBs) inhibited cell growth and inhibited the appearance of cardiac progenitor markers Nkx2.5 and Gata4 and terminal differentiated contractile proteins Mlc2v and ßMHC. Knockdown of miR-210 expression via antisense RNA activated cardiac progenitor gene activity. miR-210 inhibitory activity was attributed to silencing of the Sonic hedgehog (Shh) signaling pathway, which fosters the cardiac progenitor program. miR-210 directly silenced Shh via targeting of the Shh 3'UTR, comparable to the chemical Shh inhibitor, cyclopamine. miR-210 silencing of Shh/Gli1 signaling also blocked expression of the cell cycle regulators Cyclin D1 and Cyclin D2, and EB cell expansion. Absence of SRF expression in SRF null EBs blocked miR-210 expression, coincident with enhanced Shh, and Gli1 gene activity. Thus, SRF-dependent miR-210 expression may operate as a novel silencer of the Shh signaling pathway.


Assuntos
Diferenciação Celular , MicroRNAs/genética , Interferência de RNA , Fator de Resposta Sérica/fisiologia , Regiões 3' não Traduzidas , Animais , Sítios de Ligação , Linhagem Celular , Células-Tronco Embrionárias/fisiologia , Expressão Gênica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Proteína GLI1 em Dedos de Zinco
12.
Transcription ; 4(3): 92-6, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23584093

RESUMO

Mesp1 sits on the tip of the cardiac regulatory hierarchy, recent evidences support that it is regulated by stem cell factor Oct4, early gastrulation signal canonical Wnts and a couple of T-box factors, T and Eomes. With other transcription factors, Mesp1 programs/reprograms human cells toward cardiomyocytes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Miócitos Cardíacos/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Reprogramação Celular , Células-Tronco Embrionárias/citologia , Humanos , Miócitos Cardíacos/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteína Proto-Oncogênica c-ets-2/metabolismo , Proteínas Wnt/metabolismo
13.
Nat Commun ; 4: 1564, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23463007

RESUMO

Haematopoietic cells arise from spatiotemporally restricted domains in the developing embryo. Although studies of non-mammalian animal and in vitro embryonic stem cell models suggest a close relationship among cardiac, endocardial and haematopoietic lineages, it remains unknown whether the mammalian heart tube serves as a haemogenic organ akin to the dorsal aorta. Here we examine the haemogenic activity of the developing endocardium. Mouse heart explants generate myeloid and erythroid colonies in the absence of circulation. Haemogenic activity arises from a subset of endocardial cells in the outflow cushion and atria earlier than in the aorta-gonad-mesonephros region, and is transient and definitive in nature. Interestingly, key cardiac transcription factors, Nkx2-5 and Isl1, are expressed in and required for the haemogenic population of the endocardium. Together, these data suggest that a subset of endocardial/endothelial cells serve as a de novo source for transient definitive haematopoietic progenitors.


Assuntos
Endocárdio/fisiologia , Hematopoese/fisiologia , Animais , Endocárdio/citologia , Endocárdio/embriologia , Endocárdio/ultraestrutura , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Células Eritroides/citologia , Imunofluorescência , Átrios do Coração/citologia , Átrios do Coração/ultraestrutura , Sistema Hematopoético/citologia , Sistema Hematopoético/fisiologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Fígado/metabolismo , Camundongos , Células Mieloides/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Fatores de Transcrição/metabolismo
14.
Eur Heart J ; 34(32): 2557-65, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22504313

RESUMO

AIMS: Myocardial development is dependent on concomitant growth of cardiomyocytes and a supporting vascular network. The coupling of myocardial and coronary vascular development is partly mediated by vascular endothelial growth factor (VEGFA) signalling and additional unknown mechanisms. We examined the cardiomyocyte specific role of the transcriptional co-activator Cited2 on myocardial microstructure and vessel growth, in relation to Vegfa expression. METHODS AND RESULTS: A cardiomyocyte-specific knockout of mouse Cited2 (Cited2(Nkx)) was analysed using magnetic resonance imaging and histology. Ventricular septal defects and significant compact layer thinning (P < 0.02 at right ventricular apex, P < 0.009 at the left ventricular apex in Cited2(Nkx) vs. controls, n = 11 vs. n = 7, respectively) were found. This was associated with a significant decrease in the number of capillaries to larger vessels (ratio 1.56 ± 0.56 vs. 3.25 ± 1.63, P = 2.7 × 10(-6) Cited2(Nkx) vs. controls, n = 11 vs. n = 7, respectively) concomitant with a 1.5-fold reduction in Vegfa expression (P < 0.02, Cited2(Nkx) vs. controls, n = 12 vs. n = 12, respectively). CITED2 was subsequently found at the Vegfa promoter in mouse embryonic hearts using chromatin immunoprecipitation, and moreover found to stimulate human VEGFA promoter activity in cooperation with TFAP2 transcription factors in transient transfection assays. There was no change in the myocardial expression of the left-right patterning gene Pitx2c, a previously known target of CITED2. CONCLUSIONS: This study delineates a novel cell-autonomous role of Cited2 in regulating VEGFA transcription and the development of myocardium and coronary vasculature in the mouse. We suggest that coupling of myocardial and coronary growth in the developing heart may occur in part through a Cited2→Vegfa pathway.


Assuntos
Vasos Coronários/embriologia , Coração/embriologia , Proteínas Repressoras/fisiologia , Transativadores/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Comunicação Interventricular/embriologia , Proteínas de Homeodomínio/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Angiografia por Ressonância Magnética , Camundongos , Camundongos Knockout , Microvasos/embriologia , Miócitos Cardíacos/fisiologia , Neovascularização Fisiológica/fisiologia , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/metabolismo , Proteína Homeobox PITX2
15.
Nat Med ; 18(10): 1560-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22983395

RESUMO

The class II α-isoform of phosphatidylinositol 3-kinase (PI3K-C2α) is localized in endosomes, the trans-Golgi network and clathrin-coated vesicles; however, its functional role is not well understood. Global or endothelial-cell-specific deficiency of PI3K-C2α resulted in embryonic lethality caused by defects in sprouting angiogenesis and vascular maturation. PI3K-C2α knockdown in endothelial cells resulted in a decrease in the number of PI3-phosphate-enriched endosomes, impaired endosomal trafficking, defective delivery of VE-cadherin to endothelial cell junctions and defective junction assembly. PI3K-C2α knockdown also impaired endothelial cell signaling, including vascular endothelial growth factor receptor internalization and endosomal RhoA activation. Together, the effects of PI3K-C2α knockdown led to defective endothelial cell migration, proliferation, tube formation and barrier integrity. Endothelial PI3K-C2α deficiency in vivo suppressed postischemic and tumor angiogenesis and diminished vascular barrier function with a greatly augmented susceptibility to anaphylaxis and a higher incidence of dissecting aortic aneurysm formation in response to angiotensin II infusion. Thus, PI3K-C2α has a crucial role in vascular formation and barrier integrity and represents a new therapeutic target for vascular disease.


Assuntos
Barreira Alveolocapilar/metabolismo , Neovascularização Fisiológica , Fosfatidilinositol 3-Quinases/metabolismo , Angiotensina II/metabolismo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Movimento Celular/genética , Proliferação de Células , Células Cultivadas , Vesículas Revestidas por Clatrina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/deficiência , Fosfatidilinositol 3-Quinases/genética , Interferência de RNA , RNA Interferente Pequeno , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/genética , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Rede trans-Golgi/metabolismo
16.
Proc Natl Acad Sci U S A ; 109(32): 13016-21, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826236

RESUMO

Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR(+). However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca(2+) transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis.


Assuntos
Transdiferenciação Celular/fisiologia , Fibroblastos/citologia , Mioblastos Cardíacos/citologia , Proteína Proto-Oncogênica c-ets-2/metabolismo , Pele/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Transdiferenciação Celular/genética , Citometria de Fluxo , Imunofluorescência , Técnicas de Inativação de Genes , Humanos , Camundongos , Mioblastos Cardíacos/fisiologia , Reação em Cadeia da Polimerase , Proteína Proto-Oncogênica c-ets-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Circ Res ; 111(2): e19-31, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22647876

RESUMO

RATIONALE: Nkx2.5 is one of the most widely studied cardiac-specific transcription factors, conserved from flies to man, with multiple essential roles in both the developing and adult heart. Specific dominant mutations in NKX2.5 have been identified in adult congenital heart disease patients presenting with conduction system anomalies and recent genome-wide association studies implicate the NKX2.5 locus, as causative for lethal arrhythmias ("sudden cardiac death") that occur at a frequency in the population of 1 in 1000 per annum worldwide. Haploinsufficiency for Nkx2.5 in the mouse phenocopies human conduction disease pathology yet the phenotypes, described in both mouse and man, are highly pleiotropic, implicit of unknown modifiers and/or factors acting in epistasis with Nkx2.5/NKX2.5. OBJECTIVE: To identify bone fide upstream genetic modifier(s) of Nkx2.5/NKX2.5 function and to determine epistatic effects relevant to the manifestation of NKX2.5-dependent adult congenital heart disease. METHODS AND RESULTS: A study of cardiac function in prospero-related homeobox protein 1 (Prox1) heterozygous mice, using pressure-volume loop and micromannometry, revealed rescue of hemodynamic parameters in Nkx2.5(Cre/+); Prox1(loxP/+) animals versus Nkx2.5(Cre/+) controls. Anatomic studies, on a Cx40(EGFP) background, revealed Cre-mediated knock-down of Prox1 restored the anatomy of the atrioventricular node and His-Purkinje network both of which were severely hypoplastic in Nkx2.5(Cre/+) littermates. Steady state surface electrocardiography recordings and high-speed multiphoton imaging, to assess Ca(2+) handling, revealed atrioventricular conduction and excitation-contraction were also normalized by Prox1 haploinsufficiency, as was expression of conduction genes thought to act downstream of Nkx2.5. Chromatin immunoprecipitation on adult hearts, in combination with both gain and loss-of-function reporter assays in vitro, revealed that Prox1 recruits the corepressor HDAC3 to directly repress Nkx2.5 via a proximal upstream enhancer as a mechanism for regulating Nkx2.5 function in adult cardiac conduction. CONCLUSIONS: Here we identify Prox1 as a direct upstream modifier of Nkx2.5 in the maintenance of the adult conduction system and rescue of Nkx2.5 conduction disease phenotypes. This study is the first example of rescue of Nkx2.5 function and establishes a model for ensuring electrophysiological function within the adult heart alongside insight into a novel Prox1-HDAC3-Nkx2.5 signaling pathway for therapeutic targeting in conduction disease.


Assuntos
Epistasia Genética/genética , Sistema de Condução Cardíaco/fisiopatologia , Cardiopatias/genética , Cardiopatias/metabolismo , Histona Desacetilases/genética , Proteínas de Homeodomínio/genética , Fenótipo , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Cardiopatias/fisiopatologia , Histona Desacetilases/fisiologia , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/fisiologia , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia
18.
PLoS One ; 7(2): e31005, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312437

RESUMO

Ezh2 is a histone trimethyltransferase that silences genes mainly via catalyzing trimethylation of histone 3 lysine 27 (H3K27Me3). The role of Ezh2 as a regulator of gene silencing and cell proliferation in cancer development has been extensively investigated; however, its function in heart development during embryonic cardiogenesis has not been well studied. In the present study, we used a genetically modified mouse system in which Ezh2 was specifically ablated in the mouse heart. We identified a wide spectrum of cardiovascular malformations in the Ezh2 mutant mice, which collectively led to perinatal death. In the Ezh2 mutant heart, the endocardial cushions (ECs) were hypoplastic and the endothelial-to-mesenchymal transition (EMT) process was impaired. The hearts of Ezh2 mutant mice also exhibited decreased cardiomyocyte proliferation and increased apoptosis. We further identified that the Hey2 gene, which is important for cardiomyocyte proliferation and cardiac morphogenesis, is a downstream target of Ezh2. The regulation of Hey2 expression by Ezh2 may be independent of Notch signaling activity. Our work defines an indispensible role of the chromatin remodeling factor Ezh2 in normal cardiovascular development.


Assuntos
Coxins Endocárdicos/metabolismo , Deleção de Genes , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Animais , Apoptose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proliferação de Células , Sobrevivência Celular/genética , Transdiferenciação Celular/genética , Regulação para Baixo/genética , Coxins Endocárdicos/citologia , Coxins Endocárdicos/patologia , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética/genética , Células HeLa , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Camundongos , Miócitos Cardíacos/patologia , Complexo Repressor Polycomb 2 , Proteínas Repressoras/genética , Proteínas com Domínio T/genética
19.
PLoS One ; 7(2): e29236, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22363401

RESUMO

BACKGROUND: Inadequate placental development is associated with a high incidence of early embryonic lethality and serious pregnancy disorders in both humans and mice. However, the lack of well-defined trophoblast-specific gene regulatory elements has hampered investigations regarding the role of specific genes in placental development and fetal growth. PRINCIPAL FINDINGS: By random assembly of placental enhancers from two previously characterized genes, trophoblast specific protein α (Tpbpa) and adenosine deaminase (Ada), we identified a chimeric Tpbpa/Ada enhancer that when combined with the basal Ada promoter provided the highest luciferase activity in cultured human trophoblast cells, in comparison with non-trophoblast cell lines. We used this chimeric enhancer arrangement to drive the expression of a Cre recombinase transgene in the placentas of transgenic mice. Cre transgene expression occurred throughout the placenta but not in maternal organs examined or in the fetus. SIGNIFICANCE: In conclusion, we have provided both in vitro and in vivo evidence for a novel genetic system to achieve placental transgene expression by the use of a chimeric Tpbpa/Ada enhancer driven transgene. The availability of this expression vector provides transgenic opportunities to direct the production of desired proteins to the placenta.


Assuntos
DNA/genética , Marcação de Genes , Integrases/metabolismo , Placenta/metabolismo , Recombinação Genética/genética , Adenosina Desaminase/genética , Animais , Linhagem Celular , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Feminino , Regulação da Expressão Gênica , Genes Reporter/genética , Humanos , Luciferases/genética , Masculino , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos/genética , Gravidez , Proteínas da Gravidez/genética , Regiões Promotoras Genéticas/genética , Transcrição Gênica , Transgenes/genética , Trofoblastos/metabolismo
20.
Mol Cell Biol ; 32(2): 297-308, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22106411

RESUMO

Protein tyrosine phosphatase-like A (PTPLa) has been implicated in skeletal myogenesis and cardiogenesis. Mutations in PTPLa correlated with arrhythmogenic right ventricular dysplasia in humans and congenital centronuclear myopathy with severe hypotonia in dogs. The molecular mechanisms of PTPLa in myogenesis are unknown. In this report, we demonstrate that PTPLa is required for myoblast growth and differentiation. The cells lacking PTPLa remained immature and failed to differentiate into mature myotubes. The repressed MyoG expression was responsible for the impaired myoblast differentiation. Meanwhile, impeded cell growth, with an obvious S-phase arrest and compromised G(2)/M transition, was observed in PTPLa-deficient myoblasts. Further study demonstrated that the upregulation of cyclin D1 and cyclin E2 complexes, along with a compromised G(2)/M transition due to the decreased CDK1 (cyclin-dependent kinase 1) activity and upregulated p21, contributed to the mutant cell S-phase arrest and eventually led to the retarded cell growth. Finally, the transcriptional regulation of the PTPLa gene was explored. We identified PTPLa as a new target gene of the serum response factor (SRF). Skeletal- and cardiac-muscle-specific SRF knockouts resulted in significant decreases in PTPLa expression, suggesting a conserved transcriptional regulation of the PTPLa gene in mice.


Assuntos
Mioblastos/citologia , Miogenina/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Animais , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica , Camundongos , Camundongos Knockout , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miocárdio/metabolismo , Miogenina/genética , Proteínas Tirosina Fosfatases/genética , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA