Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(1): 337-354, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000389

RESUMO

Baz2B is a regulatory subunit of the ATP-dependent chromatin remodeling complexes BRF1 and BRF5, which control access to DNA during DNA-templated processes. Baz2B has been implicated in several diseases and also in unhealthy ageing, however limited information is available on the domains and cellular roles of Baz2B. To gain more insight into the Baz2B function, we biochemically characterized the TAM (Tip5/ARBP/MBD) domain with the auxiliary AT-hook motifs and the bromodomain (BRD). We observed alterations in histone code recognition in bromodomains carrying cancer-associated point mutations, suggesting their potential involvement in disease. Furthermore, the depletion of Baz2B in the Hap1 cell line resulted in altered cell morphology, reduced colony formation and perturbed transcriptional profiles. Despite that, super-resolution microscopy images revealed no changes in the overall chromatin structure in the absence of Baz2B. These findings provide insights into the biological function of Baz2B.


Assuntos
Montagem e Desmontagem da Cromatina , Fatores de Transcrição , Cromatina/genética , Montagem e Desmontagem da Cromatina/genética , DNA , Domínios Proteicos , Fatores de Transcrição/genética , Humanos
2.
EMBO J ; 42(19): e114162, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37641864

RESUMO

Within the virion, adenovirus DNA associates with the virus-encoded, protamine-like structural protein pVII. Whether this association is organized, and how genome packaging changes during infection and subsequent transcriptional activation is currently unclear. Here, we combined RNA-seq, MNase-seq, ChIP-seq, and single genome imaging during early adenovirus infection to unveil the structure- and time-resolved dynamics of viral chromatin changes as well as their correlation with gene transcription. Our MNase mapping data indicates that the adenoviral genome is arranged in precisely positioned nucleoprotein particles with nucleosome-like characteristics, that we term adenosomes. We identified 238 adenosomes that are positioned by a DNA sequence code and protect about 60-70 bp of DNA. The incoming adenoviral genome is more accessible at early gene loci that undergo additional chromatin de-condensation upon infection. Histone H3.3 containing nucleosomes specifically replaces pVII at distinct genomic sites and at the transcription start sites of early genes. Acetylation of H3.3 is predominant at the transcription start sites and precedes transcriptional activation. Based on our results, we propose a central role for the viral pVII nucleoprotein architecture, which is required for the dynamic structural changes during early infection, including the regulation of nucleosome assembly prior to transcription initiation. Our study thus may aid the rational development of recombinant adenoviral vectors exhibiting sustained expression in gene therapy.


Assuntos
Cromatina , Nucleossomos , Nucleossomos/genética , Ativação Transcricional , Cromatina/genética , DNA/metabolismo , Montagem e Desmontagem da Cromatina , Adenoviridae/genética
3.
JCI Insight ; 6(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33630765

RESUMO

Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.


Assuntos
Criopreservação , Epigênese Genética , Pulmão/metabolismo , Transcrição Gênica , Metilação de DNA , Expressão Gênica , Humanos , Pulmão/citologia , Análise de Sequência de RNA/métodos , Fluxo de Trabalho
4.
Sci Rep ; 8(1): 3178, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29453334

RESUMO

Wnt signaling is an evolutionarily conserved signaling route required for development and homeostasis. While canonical, ß-catenin-dependent Wnt signaling is well studied and has been linked to many forms of cancer, much less is known about the role of non-canonical, ß-catenin-independent Wnt signaling. Here, we aimed at identifying a ß-catenin-independent Wnt target gene signature in order to understand the functional significance of non-canonical signaling in colon cancer cells. Gene expression profiling was performed after silencing of key components of Wnt signaling pathway and an iterative signature algorithm was applied to predict pathway-dependent gene signatures. Independent experiments confirmed several target genes, including PLOD2, HADH, LCOR and REEP1 as non-canonical target genes in various colon cancer cells. Moreover, non-canonical Wnt target genes are regulated via RoR2, Dvl2, ATF2 and ATF4. Furthermore, we show that the ligands Wnt5a/b are upstream regulators of the non-canonical signature and moreover regulate proliferation of cancer cells in a ß-catenin-independent manner. Our experiments indicate that colon cancer cells are dependent on both ß-catenin-dependent and -independent Wnt signaling routes for growth and proliferation.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias do Colo/patologia , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/metabolismo , Proteínas Wnt/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Via de Sinalização Wnt , beta Catenina/metabolismo
5.
Nucleic Acids Res ; 45(18): 10534-10554, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28977666

RESUMO

CHD3 and CHD4 (Chromodomain Helicase DNA binding protein), two highly similar representatives of the Mi-2 subfamily of SF2 helicases, are coexpressed in many cell lines and tissues and have been reported to act as the motor subunit of the NuRD complex (nucleosome remodeling and deacetylase activities). Besides CHD proteins, NuRD contains several repressors like HDAC1/2, MTA2/3 and MBD2/3, arguing for a role as a transcriptional repressor. However, the subunit composition varies among cell- and tissue types and physiological conditions. In particular, it is unclear if CHD3 and CHD4 coexist in the same NuRD complex or whether they form distinct NuRD complexes with specific functions. We mapped the CHD composition of NuRD complexes in mammalian cells and discovered that they are isoform-specific, containing either the monomeric CHD3 or CHD4 ATPase. Both types of complexes exhibit similar intranuclear mobility, interact with HP1 and rapidly accumulate at UV-induced DNA repair sites. But, CHD3 and CHD4 exhibit distinct nuclear localization patterns in unperturbed cells, revealing a subset of specific target genes. Furthermore, CHD3 and CHD4 differ in their nucleosome remodeling and positioning behaviour in vitro. The proteins form distinct CHD3- and CHD4-NuRD complexes that do not only repress, but can just as well activate gene transcription of overlapping and specific target genes.


Assuntos
Autoantígenos/metabolismo , DNA Helicases/metabolismo , Regulação da Expressão Gênica , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismo , Animais , Linhagem Celular Tumoral , Galinhas , Reparo do DNA , Humanos , Nucleossomos/metabolismo , Transcrição Gênica
6.
Genome Biol ; 15(12): 536, 2014 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-25608606

RESUMO

BACKGROUND: The rearrangement of nucleosomes along the DNA fiber profoundly affects gene expression, but little is known about how signalling reshapes the chromatin landscape, in three-dimensional space and over time, to allow establishment of new transcriptional programs. RESULTS: Using micrococcal nuclease treatment and high-throughput sequencing, we map genome-wide changes in nucleosome positioning in primary human endothelial cells stimulated with tumour necrosis factor alpha (TNFα) - a proinflammatory cytokine that signals through nuclear factor kappa-B (NF-κB). Within 10 min, nucleosomes reposition at regions both proximal and distal to NF-κB binding sites, before the transcription factor quantitatively binds thereon. Similarly, in long TNFα-responsive genes, repositioning precedes transcription by pioneering elongating polymerases and appears to nucleate from intragenic enhancer clusters resembling super-enhancers. By 30 min, widespread repositioning throughout megabase pair-long chromosomal segments, with consequential effects on three-dimensional structure (detected using chromosome conformation capture), is seen. CONCLUSIONS: Whilst nucleosome repositioning is viewed as a local phenomenon, our results point to effects occurring over multiple scales. Here, we present data in support of a TNFα-induced priming mechanism, mostly independent of NF-κB binding and/or elongating RNA polymerases, leading to a plastic network of interactions that affects DNA accessibility over large domains.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Nucleossomos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Sítios de Ligação , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Células Endoteliais da Veia Umbilical Humana , Humanos , Dados de Sequência Molecular , Subunidade p50 de NF-kappa B/química , Nucleossomos/genética , Análise de Sequência de RNA , Transdução de Sinais
7.
Nucl Med Biol ; 31(3): 357-64, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15028248

RESUMO

To exploit the fact that IL-2 receptors are expressed by T-cells responding to foreign antigens but not by resting T-cells, humanized anti-Tac (HAT) armed with alpha-emitting radionuclides (212)Bi and (211)At was evaluated in a cynomolgus cardiac allograft model. Control graft survival was 8.2+/- 0.5 days compared with 14.0+/-1.3 days (p<0.01) survival for monkeys treated with (212)Bi labeled HAT and 26.7+/-2.4 days survival (p<0.001 versus controls) with (211)At labeled HAT. Thus, (211)At labeled HAT may have application in organ transplantation and in treatment of IL-2 receptor expressing T-cell leukemia.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Astato/uso terapêutico , Bismuto/uso terapêutico , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/radioterapia , Radioimunoterapia/métodos , Animais , Astato/imunologia , Bismuto/imunologia , Feminino , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/imunologia , Macaca fascicularis , Camundongos , Camundongos Nus , Subunidades Proteicas , Radioisótopos/uso terapêutico , Compostos Radiofarmacêuticos/imunologia , Compostos Radiofarmacêuticos/uso terapêutico , Receptores de Interleucina-2/imunologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA