Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517938

RESUMO

Cyclic nucleotide binding domains (CNB) confer allosteric regulation by cAMP or cGMP to many signaling proteins, including PKA and PKG. PKA of phylogenetically distant Trypanosoma is the first exception as it is cyclic nucleotide-independent and responsive to nucleoside analogues (Bachmaier et al., 2019). Here, we show that natural nucleosides inosine, guanosine and adenosine are nanomolar affinity CNB ligands and activators of PKA orthologs of the important tropical pathogens Trypanosoma brucei, Trypanosoma cruzi, and Leishmania. The sequence and structural determinants of binding affinity, -specificity and kinase activation of PKAR were established by structure-activity relationship (SAR) analysis, co-crystal structures and mutagenesis. Substitution of two to three amino acids in the binding sites is sufficient for conversion of CNB domains from nucleoside to cyclic nucleotide specificity. In addition, a trypanosomatid-specific C-terminal helix (αD) is required for high affinity binding to CNB-B. The αD helix functions as a lid of the binding site that shields ligands from solvent. Selectivity of guanosine for CNB-B and of adenosine for CNB-A results in synergistic kinase activation at low nanomolar concentration. PKA pulldown from rapid lysis establishes guanosine as the predominant ligand in vivo in T. brucei bloodstream forms, whereas guanosine and adenosine seem to synergize in the procyclic developmental stage in the insect vector. We discuss the versatile use of CNB domains in evolution and recruitment of PKA for novel nucleoside-mediated signaling.


Assuntos
AMP Cíclico , Nucleosídeos de Purina , AMP Cíclico/metabolismo , Nucleosídeos/farmacologia , Regulação Alostérica , Nucleotídeos Cíclicos , Guanosina , Adenosina
2.
Sci Rep ; 10(1): 21751, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303878

RESUMO

Ionotropic purinergic (P2X) receptors are trimeric channels that are activated by the binding of ATP. They are involved in multiple physiological functions, including synaptic transmission, pain and inflammation. The mechanism of activation is still elusive. Here we kinetically unraveled and quantified subunit activation in P2X2 receptors by an extensive global fit approach with four complex and intimately coupled kinetic schemes to currents obtained from wild type and mutated receptors using ATP and its fluorescent derivative 2-[DY-547P1]-AET-ATP (fATP). We show that the steep concentration-activation relationship in wild type channels is caused by a subunit flip reaction with strong positive cooperativity, overbalancing a pronounced negative cooperativity for the three ATP binding steps, that the net probability fluxes in the model generate a marked hysteresis in the activation-deactivation cycle, and that the predicted fATP binding matches the binding measured by fluorescence. Our results shed light into the intricate activation process of P2X channels.


Assuntos
Receptores Purinérgicos P2X2/metabolismo , Trifosfato de Adenosina/metabolismo , Células HEK293 , Humanos , Inflamação/genética , Dor/genética , Ligação Proteica , Receptores Purinérgicos P2X2/fisiologia , Transmissão Sináptica/genética
3.
Nat Commun ; 11(1): 1596, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221291

RESUMO

Bacterial and archaeal CRISPR-Cas systems provide RNA-guided immunity against genetic invaders such as bacteriophages and plasmids. Upon target RNA recognition, type III CRISPR-Cas systems produce cyclic-oligoadenylate second messengers that activate downstream effectors, including Csm6 ribonucleases, via their CARF domains. Here, we show that Enteroccocus italicus Csm6 (EiCsm6) degrades its cognate cyclic hexa-AMP (cA6) activator, and report the crystal structure of EiCsm6 bound to a cA6 mimic. Our structural, biochemical, and in vivo functional assays reveal how cA6 recognition by the CARF domain activates the Csm6 HEPN domains for collateral RNA degradation, and how CARF domain-mediated cA6 cleavage provides an intrinsic off-switch to limit Csm6 activity in the absence of ring nucleases. These mechanisms facilitate rapid invader clearance and ensure termination of CRISPR interference to limit self-toxicity.


Assuntos
Nucleotídeos de Adenina/química , Nucleotídeos de Adenina/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endonucleases/química , Endonucleases/metabolismo , Oligorribonucleotídeos/química , Oligorribonucleotídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Domínios Proteicos , Estabilidade de RNA
4.
J Neurochem ; 154(3): 251-262, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31883343

RESUMO

Ionotropic purinergic receptors (P2X receptors) are non-specific cation channels that are activated by the binding of ATP at their extracellular side. P2X receptors contribute to multiple functions, including the generation of pain, inflammation, or synaptic transmission. The channels are trimers and structural information on several of their isoforms is available. In contrast, the cooperation of the subunits in the activation process is poorly understood. We synthesized a novel fluorescent ATP derivative, 2-[DY-547P1]-AET-ATP (fATP) to unravel the complex activation process in P2X2 and mutated P2X2 H319K channels with enhanced apparent affinity by characterizing the relation between ligand binding and activation gating. fATP is a full agonist with respect to ATP that reports the degree of binding by bright fluorescence. For quantifying the binding, a fast automated algorithm was employed on human embryonic kidney cell culture images. The concentrations of half maximum occupancy and activation as well as the respective Hill coefficients were determined. All Hill coefficients exceeded unity, even at an occupancy <10%, suggesting cooperativity of the binding even for the first and second binding step. fATP shows promise for continuative functional studies on other purinergic receptors and, beyond, any other ATP-binding proteins.


Assuntos
Trifosfato de Adenosina/metabolismo , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Agonistas do Receptor Purinérgico P2X/síntese química , Agonistas do Receptor Purinérgico P2X/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Animais , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Ligantes , Ligação Proteica , Ratos , Relação Estrutura-Atividade
5.
Cells ; 8(12)2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31817822

RESUMO

Signalling by cyclic adenosine monophosphate (cAMP) occurs via various effector proteins, notably protein kinase A and the guanine nucleotide exchange factors Epac1 and Epac2. These proteins are activated by cAMP binding to conserved cyclic nucleotide binding domains. The specific roles of the effector proteins in various processes in different types of cells are still not well defined, but investigations have been facilitated by the development of cyclic nucleotide analogues with distinct selectivity profiles towards a single effector protein. A remaining challenge in the development of such analogues is the poor membrane permeability of nucleotides, which limits their applicability in intact living cells. Here, we report the synthesis and characterisation of S223-AM, a cAMP analogue designed as an acetoxymethyl ester prodrug to overcome limitations of permeability. Using total internal reflection imaging with various fluorescent reporters, we show that S223-AM selectively activates Epac2, but not Epac1 or protein kinase A, in intact insulin-secreting ß-cells, and that this effect was associated with pronounced activation of the small G-protein Rap. A comparison of the effects of different cAMP analogues in pancreatic islet cells deficient in Epac1 and Epac2 demonstrates that cAMP-dependent Rap activity at the ß-cell plasma membrane is exclusively dependent on Epac2. With its excellent selectivity and permeability properties, S223-AM should get broad utility in investigations of cAMP effector involvement in many different types of cells.


Assuntos
AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Pró-Fármacos/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Camundongos , Pró-Fármacos/síntese química , Pró-Fármacos/química
6.
J Biol Chem ; 294(47): 17978-17987, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31615893

RESUMO

cAMP acts as a second messenger in many cellular processes. Three protein types mainly mediate cAMP-induced effects: PKA, exchange protein directly activated by cAMP (Epac), and cyclic nucleotide-modulated channels (cyclic nucleotide-gated or hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels). Discrimination among these cAMP signaling pathways requires specific targeting of only one protein. Previously, cAMP modifications at position N6 of the adenine ring (PKA) and position 2'-OH of the ribose (Epac) have been used to produce target-selective compounds. However, cyclic nucleotide-modulated ion channels were usually outside of the scope of these previous studies. These channels are widely distributed, so possible channel cross-activation by PKA- or Epac-selective agonists warrants serious consideration. Here we demonstrate the agonistic effects of three PKA-selective cAMP derivatives, N6-phenyladenosine-3',5'-cyclic monophosphate (N6-Phe-cAMP), N6-benzyladenosine-3',5'-cyclic monophosphate (N6-Bn-cAMP), and N6-benzoyl-adenosine-3',5'-cyclic monophosphate (N6-Bnz-cAMP), on murine HCN2 pacemaker channels. Electrophysiological characterization in Xenopus oocytes revealed that these derivatives differ in apparent affinities depending on the modification type but that their efficacy and effects on HCN2 activation kinetics are similar to those of cAMP. Docking experiments suggested a pivotal role of Arg-635 at the entrance of the binding pocket in HCN2, either causing stabilizing cation-π interactions with the aromatic ring in N6-Phe-cAMP or N6-Bn-cAMP or a steric clash with the aromatic ring in N6-Bnz-cAMP. A reduced apparent affinity of N6-Phe-cAMP toward the variants R635A and R635E strengthened that notion. We conclude that some PKA activators also effectively activate HCN2 channels. Hence, when studying PKA-mediated cAMP signaling with cAMP derivatives in a native environment, activation of HCN channels should be considered.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/agonistas , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Arginina/metabolismo , Sítios de Ligação , Ativação Enzimática , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico , Cinética , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Oócitos/metabolismo , Xenopus
7.
Nat Commun ; 10(1): 1421, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30926779

RESUMO

Protein kinase A (PKA), the main effector of cAMP in eukaryotes, is a paradigm for the mechanisms of ligand-dependent and allosteric regulation in signalling. Here we report the orthologous but cAMP-independent PKA of the protozoan Trypanosoma and identify 7-deaza-nucleosides as potent activators (EC50 ≥ 6.5 nM) and high affinity ligands (KD ≥ 8 nM). A co-crystal structure of trypanosome PKA with 7-cyano-7-deazainosine and molecular docking show how substitution of key amino acids in both CNB domains of the regulatory subunit and its unique C-terminal αD helix account for this ligand swap between trypanosome PKA and canonical cAMP-dependent PKAs. We propose nucleoside-related endogenous activators of Trypanosoma brucei PKA (TbPKA). The existence of eukaryotic CNB domains not associated with binding of cyclic nucleotides suggests that orphan CNB domains in other eukaryotes may bind undiscovered signalling molecules. Phosphoproteome analysis validates 7-cyano-7-deazainosine as powerful cell-permeable inducer to explore cAMP-independent PKA signalling in medically important neglected pathogens.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Ativadores de Enzimas/farmacologia , Nucleosídeos/análogos & derivados , Trypanosoma brucei brucei/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Dipiridamol/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ativadores de Enzimas/química , Holoenzimas/metabolismo , Leishmania/efeitos dos fármacos , Simulação de Acoplamento Molecular , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Trypanosoma brucei brucei/efeitos dos fármacos , Tubercidina/farmacologia
8.
Diabetes ; 67(10): 1999-2011, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29986926

RESUMO

Glucose metabolism stimulates cell division control protein 42 homolog (Cdc42)-p21-activated kinase (Pak1) activity and initiates filamentous actin (F-actin) cytoskeleton remodeling in pancreatic ß-cells so that cytoplasmic secretory granules can translocate to the plasma membrane where insulin exocytosis occurs. Since glucose metabolism also generates cAMP in ß-cells, the cross talk of cAMP signaling with Cdc42-Pak1 activation might be of fundamental importance to glucose-stimulated insulin secretion (GSIS). Previously, the type-2 isoform of cAMP-regulated guanine nucleotide exchange factor 2 (Epac2) was established to mediate a potentiation of GSIS by cAMP-elevating agents. Here we report that nondiabetic human islets and INS-1 832/13 ß-cells treated with the selective Epac activator 8-pCPT-2'-O-Me-cAMP-AM exhibited Cdc42-Pak1 activation at 1 mmol/L glucose and that the magnitude of this effect was equivalent to that which was measured during stimulation with 20 mmol/L glucose in the absence of 8-pCPT-2'-O-Me-cAMP-AM. Conversely, the cAMP antagonist Rp-8-Br-cAMPS-pAB prevented glucose-stimulated Cdc42-Pak1 activation, thereby blocking GSIS while also increasing cellular F-actin content. Although islets from donors with type 2 diabetes had profound defects in glucose-stimulated Cdc42-Pak1 activation and insulin secretion, these defects were rescued by the Epac activator so that GSIS was restored. Collectively, these findings indicate an unexpected role for cAMP as a permissive or direct metabolic coupling factor in support of GSIS that is Epac2 and Cdc42-Pak1 regulated.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Glucose/farmacologia , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Quinases Ativadas por p21/metabolismo , 8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , 8-Bromo Monofosfato de Adenosina Cíclica/química , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Linhagem Celular , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ratos , Tionucleotídeos/química , Tionucleotídeos/farmacologia
9.
J Cell Biol ; 217(6): 2167-2184, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29615473

RESUMO

Type II isoforms of cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA-II) contain a phosphorylatable epitope within the inhibitory domain of RII subunits (pRII) with still unclear function. In vitro, RII phosphorylation occurs in the absence of cAMP, whereas staining of cells with pRII-specific antibodies revealed a cAMP-dependent pattern. In sensory neurons, we found that increased pRII immunoreactivity reflects increased accessibility of the already phosphorylated RII epitope during cAMP-induced opening of the tetrameric RII2:C2 holoenzyme. Accordingly, induction of pRII by cAMP was sensitive to novel inhibitors of dissociation, whereas blocking catalytic activity was ineffective. Also in vitro, cAMP increased the binding of pRII antibodies to RII2:C2 holoenzymes. Identification of an antibody specific for the glycine-rich loop of catalytic subunits facing the pRII-epitope confirmed activity-dependent binding with similar kinetics, proving that the reassociation is rapid and precisely controlled. Mechanistic modeling further supported that RII phosphorylation precedes cAMP binding and controls the inactivation by modulating the reassociation involving the coordinated action of phosphodiesterases and phosphatases.


Assuntos
Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Subunidades Proteicas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Anticorpos/farmacologia , Extratos Celulares , Permeabilidade da Membrana Celular/efeitos dos fármacos , Subunidade RIIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Isoenzimas/metabolismo , Masculino , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Sci Rep ; 8(1): 3749, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491394

RESUMO

We report the design and target validation of chimeric peptide EP45, a novel 45 amino acid monomeric dual agonist peptide that contains amino acid sequence motifs present within the blood glucose-lowering agent exendin-4 (Ex-4) and the appetite-suppressing agent PYY(3-36). In a new high-throughput FRET assay that provides real-time kinetic information concerning levels of cAMP in living cells, EP45 recapitulates the action of Ex-4 to stimulate cAMP production via the glucagon-like peptide-1 receptor (GLP-1R), while also recapitulating the action of PYY(3-36) to inhibit cAMP production via the neuropeptide Y2 receptor (NPY2R). EP45 fails to activate glucagon or GIP receptors, whereas for cells that co-express NPY2R and adenosine A2B receptors, EP45 acts in an NPY2R-mediated manner to suppress stimulatory effects of adenosine on cAMP production. Collectively, such findings are remarkable in that they suggest a new strategy in which the co-existing metabolic disorders of type 2 diabetes and obesity will be treatable using a single peptide such as EP45 that lowers levels of blood glucose by virtue of its GLP-1R-mediated effect, while simultaneously suppressing appetite by virtue of its NPY2R-mediated effect.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeos/farmacologia , Receptores de Neuropeptídeo Y/agonistas , Sequência de Aminoácidos , Células HEK293 , Humanos , Peptídeos/química
11.
Oncotarget ; 9(4): 5301-5320, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435180

RESUMO

Melanoma is one of the most aggressive cancers and displays high resistance to conventional chemotherapy underlining the need for new therapeutic strategies. The cGMP/PKG signaling pathway was detected in melanoma cells and shown to reduce migration, proliferation and to increase apoptosis in different cancer types. In this study, we evaluated the effects on cell viability, cell death, proliferation and migration of novel dimeric cGMP analogues in two melanoma cell lines (MNT1 and SkMel28). These new dimeric cGMP analogues, by activating PKG with limited effects on PKA, significantly reduced proliferation, migration and increased cell death. No decrease in cell viability was observed in non-tumor cells suggesting a tumor-specific effect. These effects observed in melanoma are possibly mediated by PKG2 activation based on the decreased toxic effects in tumor cell lines not expressing PKG2. Finally, PKG-associated phosphorylation of vasodilator-stimulated-phosphoprotein (VASP), linked to cell death, proliferation and migration was found increased and with a change of subcellular localization. Increased phosphorylation of RhoA induced by activation of PKG may also contribute to reduced migration ability of the SkMel28 melanoma cell line when treated with cGMP analogues. These findings suggest that the cGMP/PKG pathway can be envisaged as a therapeutic target of novel dimeric cGMP analogues for the treatment of melanoma.

12.
Eur J Med Chem ; 141: 61-72, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028532

RESUMO

Activation of the cGMP-dependent protein kinase G (PKG) can inhibit growth and/or induce apoptosis in colon cancer. In this study we evaluated the effects on cell viability, cell death and proliferation of novel dimeric cGMP analogues, compared to a monomeric compound. Three colon cancer cell lines, which only express isoform 2 of PKG, were treated with these novel cGMP analogues and responded with increased PKG activity. cGMP analogues reduced cell viability in the three cell lines and this was due to a cytostatic rather than cytotoxic effect. These findings suggest that activation of PKG2 can be a therapeutic target in the treatment of colon cancer and, most importantly, that dimeric cGMP analogues can further improve the beneficial effects previously observed with monomeric cGMP analogues.


Assuntos
Antineoplásicos/farmacologia , GMP Cíclico/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Dimerização , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
13.
J Cell Sci ; 130(13): 2134-2146, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515230

RESUMO

Maturation of nociceptive neurons depends on changes in transcription factors, ion channels and neuropeptides. Mature nociceptors initiate pain in part by drastically reducing the activation threshold via intracellular sensitization signaling. Whether sensitization signaling also changes during development and aging remains so far unknown. Using a novel automated microscopy approach, we quantified changes in intracellular signaling protein expression and in their signaling dynamics, as well as changes in intracellular signaling cascade wiring, in sensory neurons from newborn to senescent (24 months of age) rats. We found that nociceptive subgroups defined by the signaling components protein kinase A (PKA)-RIIß (also known as PRKAR2B) and CaMKIIα (also known as CAMK2A) developed at around postnatal day 10, the time of nociceptor maturation. The integrative nociceptor marker, PKA-RIIß, allowed subgroup segregation earlier than could be achieved by assessing the classical markers TRPV1 and Nav1.8 (also known as SCN10A). Signaling kinetics remained constant over lifetime despite in part strong changes in the expression levels. Strikingly, we found a mechanism important for neuronal memory - i.e. the crosstalk from cAMP and PKA to ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) - to emerge postnatally. Thus, maturation of nociceptors is closely accompanied by altered expression, activation and connectivity of signaling pathways known to be central for pain sensitization and neuronal memory formation.


Assuntos
Envelhecimento/genética , AMP Cíclico/genética , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Animais Recém-Nascidos/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Subunidade RIIbeta da Proteína Quinase Dependente de AMP Cíclico/genética , Gânglios Espinais/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Ratos , Canais de Cátion TRPV/genética
14.
Handb Exp Pharmacol ; 238: 359-384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27392950

RESUMO

The cyclic dinucleotides (CDNs) cyclic diguanosine monophosphate (c-diGMP) and cyclic diadenosine monophosphate (c-diAMP) with two canonical 3'→5' internucleotide linkages are ubiquitous second messenger molecules in bacteria, regulating a multitude of physiological processes. Recently the noncanonical CDN cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP) featuring a mixed linkage, which consists of a 2'→5' and a 3'→5' internucleotide bond, has been identified as a signaling molecule in metazoan species in late 2012. 2'3'-cGAMP formation is biocatalyzed by cGAMP synthase (cGAS) upon sensing of cytosolic double-stranded DNA (dsDNA) and functions as an endogenous inducer of innate immunity by directly binding to and activating the adaptor protein stimulator of interferon genes (STING). Thereby 2'3'-cGAMP can stimulate interferon-ß (INF-ß) secretion, a major signaling pathway of host defense, which is independent of toll-like receptor (TLR) activation. Medicinal chemistry of 2'3'-cGAMP and development of corresponding analogs are still in their infancy, and only a handful of structurally related compounds are available to the scientific community. The aim of this chapter is to summarize synthetic approaches to prepare canonical and noncanonical endogenous CDNs including 2'3'-cGAMP. Furthermore, we will describe syntheses of 2'3'-cGAMP analogs bearing modifications, which will facilitate further studies of the emerging biological functions of 2'3'-cGAMP and to identify additional receptor proteins. Finally, we will review latest developments concerning 2'3'-cGAMP analogs with improved hydrolytic stability in cell cultures and in tissues, putatively qualifying for new therapeutic options on the basis of 2'3'-cGAMP signaling.


Assuntos
Nucleotídeos Cíclicos/síntese química , Sistemas do Segundo Mensageiro , Animais , Estabilidade de Medicamentos , Humanos , Hidrólise , Estrutura Molecular , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Relação Estrutura-Atividade
15.
Handb Exp Pharmacol ; 238: 307-337, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27896476

RESUMO

After decades of intensive research on adenosine-3',5'-cyclic monophosphate (cAMP)- and guanosine-3',5'-cyclic monophosphate (cGMP)-related second messenger systems, also the noncanonical congeners cyclic cytidine-3',5'-monophosphate (cCMP) and cyclic uridine-3',5'-monophosphate (cUMP) gained more and more interest. Until the late 1980s, only a small number of cCMP and cUMP analogs with sometimes undefined purities had been described. Moreover, most of these compounds had been rather synthesized as precursors of antitumor and antiviral nucleoside-5'-monophosphates and hence had not been tested for any second messenger activity. Along with the recurring interest in cCMP- and cUMP-related signaling in the early 2000s, it became evident that well-characterized small molecule analogs with reliable purities would serve as highly valuable tools for the evaluation of a putative second messenger role of cyclic pyrimidine nucleotides. Meanwhile, for this purpose new cCMP and cUMP derivatives have been developed, and already known analogs have been resynthesized and highly purified. This chapter summarizes early medicinal chemistry work on cCMP and cUMP and analogs thereof, followed by a description of recent synthetic developments and an outlook on potential future directions.


Assuntos
CMP Cíclico/síntese química , Nucleotídeos Cíclicos/síntese química , Pró-Fármacos/síntese química , Uridina Monofosfato/síntese química , Animais , Cristalização , CMP Cíclico/análogos & derivados , CMP Cíclico/metabolismo , CMP Cíclico/farmacologia , Humanos , Estrutura Molecular , Nucleotídeos Cíclicos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Permeabilidade , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Uridina Monofosfato/metabolismo , Uridina Monofosfato/farmacologia
16.
Sci Rep ; 6: 29378, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27405959

RESUMO

Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory subunits for channel activation is not fully understood. By measuring ligand binding and channel activation simultaneously, we show that in functional heterotetrameric channels not only the CNGA2 subunits and the CNGA4 subunit but also the CNGB1b subunit binds cyclic nucleotides and, moreover, also alone translates this signal to open the pore. In addition, we show that the CNGB1b subunit is the most sensitive subunit in a heterotetrameric channel to cyclic nucleotides and that it accelerates deactivation to a similar extent as does the CNGA4 subunit. In conclusion, the CNGB1b subunit participates in ligand-gated activation of olfactory CNG channels and, particularly, contributes to rapid termination of odorant signal in an olfactory sensory neuron.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Neurônios Receptores Olfatórios/metabolismo , Animais , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Feminino , Ativação do Canal Iônico/fisiologia , Ligantes , Odorantes , Ligação Proteica , Ratos , Xenopus laevis
17.
Science ; 353(6294): 45-50, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27256882

RESUMO

Poly[adenosine diphosphate (ADP)-ribose] polymerases (PARPs) are a family of enzymes that modulate diverse biological processes through covalent transfer of ADP-ribose from the oxidized form of nicotinamide adenine dinucleotide (NAD(+)) onto substrate proteins. Here we report a robust NAD(+) analog-sensitive approach for PARPs, which allows PARP-specific ADP-ribosylation of substrates that is suitable for subsequent copper-catalyzed azide-alkyne cycloaddition reactions. Using this approach, we mapped hundreds of sites of ADP-ribosylation for PARPs 1, 2, and 3 across the proteome, as well as thousands of PARP-1-mediated ADP-ribosylation sites across the genome. We found that PARP-1 ADP-ribosylates and inhibits negative elongation factor (NELF), a protein complex that regulates promoter-proximal pausing by RNA polymerase II (Pol II). Depletion or inhibition of PARP-1 or mutation of the ADP-ribosylation sites on NELF-E promotes Pol II pausing, providing a clear functional link between PARP-1, ADP-ribosylation, and NELF. This analog-sensitive approach should be broadly applicable across the PARP family and has the potential to illuminate the ADP-ribosylated proteome and the molecular mechanisms used by individual PARPs to mediate their responses to cellular signals.


Assuntos
Difosfato de Adenosina/química , NAD/química , Poli(ADP-Ribose) Polimerases/metabolismo , Ribose/química , Elongação da Transcrição Genética , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo
18.
Mol Endocrinol ; 29(7): 988-1005, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26061564

RESUMO

cAMP-elevating agents such as the incretin hormone glucagon-like peptide-1 potentiate glucose-stimulated insulin secretion (GSIS) from pancreatic ß-cells. However, a debate has existed since the 1970s concerning whether or not cAMP signaling is essential for glucose alone to stimulate insulin secretion. Here, we report that the first-phase kinetic component of GSIS is cAMP-dependent, as revealed through the use of a novel highly membrane permeable para-acetoxybenzyl (pAB) ester prodrug that is a bioactivatable derivative of the cAMP antagonist adenosine-3',5'-cyclic monophosphorothioate, Rp-isomer (Rp-cAMPS). In dynamic perifusion assays of human or rat islets, a step-wise increase of glucose concentration leads to biphasic insulin secretion, and under these conditions, 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer, 4-acetoxybenzyl ester (Rp-8-Br-cAMPS-pAB) inhibits first-phase GSIS by up to 80%. Surprisingly, second-phase GSIS is inhibited to a much smaller extent (≤20%). Using luciferase, fluorescence resonance energy transfer, and bioluminescence resonance energy transfer assays performed in living cells, we validate that Rp-8-Br-cAMPS-pAB does in fact block cAMP-dependent protein kinase activation. Novel effects of Rp-8-Br-cAMPS-pAB to block the activation of cAMP-regulated guanine nucleotide exchange factors (Epac1, Epac2) are also validated using genetically encoded Epac biosensors, and are independently confirmed in an in vitro Rap1 activation assay using Rp-cAMPS and Rp-8-Br-cAMPS. Thus, in addition to revealing the cAMP dependence of first-phase GSIS from human and rat islets, these findings establish a pAB-based chemistry for the synthesis of highly membrane permeable prodrug derivatives of Rp-cAMPS that act with micromolar or even nanomolar potency to inhibit cAMP signaling in living cells.


Assuntos
8-Bromo Monofosfato de Adenosina Cíclica/análogos & derivados , AMP Cíclico/farmacologia , Glucose/farmacologia , Insulina/metabolismo , Pró-Fármacos/farmacologia , Tionucleotídeos/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Animais , Álcool Benzílico/farmacologia , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Citosol/metabolismo , Ativação Enzimática/efeitos dos fármacos , Esterases/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Holoenzimas/metabolismo , Humanos , Secreção de Insulina , Integrases/metabolismo , Luciferases/metabolismo , Masculino , Pessoa de Meia-Idade , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
19.
PLoS One ; 10(5): e0126057, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25978317

RESUMO

cAMP and cGMP are well established second messengers that are essential for numerous (patho)physiological processes. These purine cyclic nucleotides activate cAK and cGK, respectively. Recently, the existence of cCMP was described, and a possible function for this cyclic nucleotide was investigated. It was postulated that cCMP plays a role as a second messenger. However, the functions regulated by cCMP are mostly unknown. To elucidate probable functions, cCMP-binding and -activated proteins were identified using different methods. We investigated the effect of cCMP on purified cyclic nucleotide-dependent protein kinases and lung and jejunum tissues of wild type (WT), cGKI-knockout (cGKI KO) and cGKII-knockout (cGKII KO) mice. The catalytic activity of protein kinases was measured by a (γ-32P) ATP kinase assay. Cyclic nucleotide-dependent protein kinases (cAK, cGKI and cGKII) in WT tissue lysates were stimulated by cCMP. In contrast, there was no stimulation of phosphorylation in KO tissue lysates. Competitive binding assays identified cAK, cGKI, and cGKII as cCMP-binding proteins. An interaction between cCMP/MAPK and a protein-protein complex of MAPK/cGK were detected via cCMP affinity chromatography and co-immunoprecipitation, respectively. These complexes were abolished or reduced in jejunum tissues from cGKI KO or cGKII KO mice. In contrast, these complexes were observed in the lung tissues from WT, cGKI KO and cGKII KO mice. Moreover, cCMP was also able to stimulate the phosphorylation of MAPK. These results suggest that MAPK signaling is regulated by cGMP-dependent protein kinases upon activation by cCMP. Based on these results, we propose that additional cCMP-dependent protein kinases that are capable of modulating MAPK signaling could exist. Hence, cCMP could potentially act as a second messenger in the cAK/cGK and MAPK signaling pathways and play an important role in physiological processes of the jejunum and lung.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , CMP Cíclico/metabolismo , Guanilato Ciclase/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Ligação Competitiva , Western Blotting , Eletroforese em Gel de Poliacrilamida , Feminino , Imunoprecipitação , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Fosforilação , Guanilil Ciclase Solúvel
20.
PLoS Biol ; 13(1): e1002038, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25603503

RESUMO

The second messenger cAMP is known to augment glucose-induced insulin secretion. However, its downstream targets in pancreatic ß-cells have not been unequivocally determined. Therefore, we designed cAMP analogues by a structure-guided approach that act as Epac2-selective agonists both in vitro and in vivo. These analogues activate Epac2 about two orders of magnitude more potently than cAMP. The high potency arises from increased affinity as well as increased maximal activation. Crystallographic studies demonstrate that this is due to unique interactions. At least one of the Epac2-specific agonists, Sp-8-BnT-cAMPS (S-220), enhances glucose-induced insulin secretion in human pancreatic cells. Selective targeting of Epac2 is thus proven possible and may be an option in diabetes treatment.


Assuntos
AMP Cíclico/análogos & derivados , AMP Cíclico/química , Fatores de Troca do Nucleotídeo Guanina/agonistas , Sítios de Ligação , Linhagem Celular Tumoral , Cristalografia por Raios X , AMP Cíclico/farmacologia , Desenho de Fármacos , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Modelos Moleculares , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA