Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 44(3-4): 377-85, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8597538

RESUMO

A DNA sequence coding for a subtype of the hirudin variant HV1 was expressed in the methylotrophic yeast Hansenula polymorpha from a strongly inducible promoter element derived from a gene of the methanol metabolism pathway. For secretion, the coding sequence was fused to the KEX2 recognition site of three different prepro segments engineered from the MF alpha 1 gene of Saccharomyces cerevisiae, the glucoamylase (GAM1) gene of Schwanniomyces occidentalis and the gene for a crustacean hyperglycemic hormone from the shore crab Carcinus maenas. In all three cases, correct processing of the precursor molecule and efficient secretion of the mature protein were observed. In fermentations on a 10-1 scale of a transformant strain harbouring a MF alpha 1/hirudin-gene fusion yields in the range of grams per litre could be obtained. The majority of the secreted product was identified as the full-length 65-amino-acid hirudin. Only small amounts of a truncated 63-amino- acid product, frequently observed in S. cerevisiae-based expression systems, could be detected.


Assuntos
Hirudinas/metabolismo , Pichia/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes , Braquiúros/genética , Fermentação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Glucana 1,4-alfa-Glucosidase/biossíntese , Glucana 1,4-alfa-Glucosidase/genética , Hirudinas/biossíntese , Hirudinas/genética , Hormônios de Invertebrado/biossíntese , Hormônios de Invertebrado/genética , Fator de Acasalamento , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Biossíntese Peptídica , Peptídeos/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Saccharomyces cerevisiae/genética
2.
Biochem J ; 264(2): 347-55, 1989 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-2604721

RESUMO

An alpha 1,2-mannosidase (Man9-mannosidase) involved in N-linked oligosaccharide processing has been purified about 16,000-fold from pig liver crude microsomes (microsomal fractions) by CM-Sepharose and DEAE-Sephacel chromatography, concanavalin A (Con A)-Sepharose chromatography and, as the key step of the procedure, affinity chromatography on immobilized N-5-carboxypentyl-l-deoxymannojirimycin (CP-dMM). On SDS/polyacrylamide-gel electrophoresis under reducing conditions, the isolated enzyme migrated as a single protein band with a molecular mass of 49 kDa. The enzyme does not bind Con A and is not susceptible to glycopeptidase F, indicating that it lacks N-linked oligosaccharides of the high-mannose or complex type. Purified Man9-mannosidase has a pH optimum close to 6.0 and requires bivalent cations for activity, with Ca2+ being most effective. The enzyme is inhibited strongly by basic sugar analogues of mannose such as 1-deoxymannojirimycin (dMM, Ki approximately 5 microM), N-methyl-dMM (Ki approximately 55 microM) and CP-dMM (Ki approximately 150 microM), whereas NN-dimethyl-dMM and the mannosidase II inhibitor swainsonine were hardly or not at all inhibitory. A homogeneous preparation of the 49 kDa enzyme cleaves specifically three of the four alpha 1,2-mannosidic linkages in the natural Man9-GlcNAc2 (M9) substrate. The relative rates by which the parent and intermediate structures are hydrolysed were found to be about 3:2:5 for M9, M8 and M7 respectively. The enzyme displays only marginal activity toward the remaining alpha 1,2-mannosidic linkages in the Man9-GlcNAc2 oligosaccharide (relative rate of M6 hydrolysis approximately 0.02) and is not active against nitrophenyl and methylumbelliferyl alpha-mannosides. This unique substrate specificity suggests that Man9-mannosidase processing differs from that catalysed by other trimming alpha 1,2-mannosidases hitherto reported. A polyclonal antibody raised against the denatured 49 kDa polypeptide not only recognizes a protein band of similar size in Western blots of crude microsomes, but also reacts strongly with a 65 kDa protein species. On trypsin treatment of detergent-solubilized microsomes, the 65 kDa protein is converted specifically into a stable 49 kDa fragment, indicating a precursor-product relationship between the two proteins. We conclude from this observation that the 65 kDa protein represents the intact form of Man9-mannosidase from which the 49 kDa enzyme which we have isolated has been generated, with retention of catalytic activity, by proteolysis during purification. Proteolytic studies with sealed microsomes suggest that the intact 65 kDa enzyme is a protein with a membrane-spanning domain, as well as a cytosolic polypeptide domain of size at least 3 kDa.


Assuntos
Membranas Intracelulares/enzimologia , Manosidases/isolamento & purificação , Microssomos Hepáticos/enzimologia , Animais , Sítios de Ligação , Bovinos , Cromatografia de Afinidade , Cromatografia por Troca Iônica , Cinética , Manosidases/metabolismo , Peso Molecular , Fragmentos de Peptídeos/isolamento & purificação , Suínos , Tripsina
3.
Eur J Biochem ; 183(3): 661-9, 1989 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-2673780

RESUMO

Trimming glucosidase I has been purified about 400-fold from pig liver crude microsomes by fractional salt/detergent extraction, affinity chromatography and poly(ethylene glycol) precipitation. The purified enzyme has an apparent molecular mass of 85 kDa, and is an N-glycoprotein as shown by its binding to concanavalin A-Sepharose and its susceptibility to endo-beta-N-acetylglucosaminidase (endo H). The native form of glucosidase I is unusually resistant to non-specific proteolysis. The enzyme can, however, be cleaved at high, that is equimolar, concentrations of trypsin into a defined and enzymatically active mixture of protein fragments with molecular mass of 69 kDa, 45 kDa and 29 kDa, indicating that it is composed of distinct protein domains. The two larger tryptic fragments can be converted by endo H to 66 kDa and 42 kDa polypeptides, suggesting that glucosidase I contains one N-linked high-mannose sugar chain. Purified pig liver glucosidase I hydrolyzes specifically the terminal alpha 1-2-linked glucose residue from natural Glc3-Man9-GlcNAc2, but is inactive towards Glc2-Man9-GlcNAc2 or nitrophenyl-/methyl-umbelliferyl-alpha-glucosides. The enzyme displays a pH optimum close to 6.4, does not require metal ions for activity and is strongly inhibited by 1-deoxynojirimycin (Ki approximately 2.1 microM), N,N-dimethyl-1-deoxynojirimycin (Ki approximately 0.5 microM) and N-(5-carboxypentyl)-1-deoxynojirimycin (Ki approximately 0.45 microM), thus closely resembling calf liver and yeast glucosidase I. Polyclonal antibodies raised against denatured pig liver glucosidase I, were found to recognize specifically the 85 kDa enzyme protein in Western blots of crude pig liver microsomes. This antibody also detected proteins of similar size in crude microsomal preparations from calf and human liver, calf kidney and intestine, indicating that the enzymes from these cells have in common one or more antigenic determinants. The antibody failed to cross-react with the enzyme from chicken liver, yeast and Volvox carteri under similar experimental conditions, pointing to a lack of sufficient similarity to convey cross-reactivity.


Assuntos
Microssomos Hepáticos/enzimologia , alfa-Glucosidases/isolamento & purificação , Animais , Western Blotting , Cromatografia de Afinidade , Eletroforese em Gel de Poliacrilamida , Imunoglobulina G , Indicadores e Reagentes , Cinética , Peso Molecular , Fragmentos de Peptídeos/isolamento & purificação , Suínos , Tripsina , alfa-Glucosidases/metabolismo
4.
Eur J Biochem ; 162(3): 635-42, 1987 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-3549291

RESUMO

A particulate translation system isolated from the yeast Saccharomyces cerevisiae was shown to translate faithfully in-vitro-transcribed mRNA coding for a mating hormone precursor (prepro-alpha-factor mRNA) and to N-glycosylate the primary translation product after its translocation into the lumen of the microsomal vesicles. Glycosylation of its three potential sugar attachment sites was found to be competitively inhibited by acceptor peptides containing the consensus sequence Asn-Xaa-Thr, supporting the view that the glycan chains are N-glycosidically attached to the prepro-alpha-factor polypeptide. The accumulation in the presence of acceptor peptides of a membrane-specific, unglycosylated translation product (pp-alpha-F0) differing in molecular mass from a cytosolically located, protease-K-sensitive alpha-factor polypeptide (pp-alpha-Fcyt) by about 1.3 kDa, suggests that, in contrast to previous reports, a signal sequence is cleaved from the mating hormone precursor on/after translocation. This conclusion is supported by the observation that the multiply glycosylated alpha-factor precursor is cleaved by endoglucosaminidase H to a product with a molecular mass smaller than the primary translation product pp-alpha-Fcyt but larger than the membrane-specific pp-alpha-F0. Translation and glycosylation experiments carried out in the presence of various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-1-deoxynojirimyin and 1-deoxymannojirimycin) indicate that the N-linked oligosaccharide chains of the glycosylated prepro-alpha-factor species are extensively processed under the in vitro conditions of translation. From the specificity of the glycosidase inhibitors applied and the differences in the molecular mass of the glycosylated translation products generated in their presence, we conclude that the glycosylation-competent microsomes contain trimming enzymes, most likely glucosidase I, glucosidase II and a trimming mannosidase, which process the prepro-alpha-factor glycans down to the (Man)8(GlcNAc)2 stage. Furthermore, several arguments strongly suggest that these three enzymes, which apparently represent the full array of trimming activities in yeast, are exclusively located in the lumen of microsomal vesicles derived from endoplasmic reticulum membranes.


Assuntos
Asparagina/metabolismo , Oligossacarídeos/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Proteínas Fúngicas/genética , Vetores Genéticos , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosilação , Microssomos/enzimologia , Biossíntese de Proteínas , Precursores de Proteínas/genética , Saccharomyces cerevisiae/genética , Frações Subcelulares/enzimologia , Transcrição Gênica
5.
Biosci Rep ; 6(9): 827-34, 1986 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-3545316

RESUMO

When programmed with yeast prepro-alpha-factor mRNA, the heterologous reticulocyte/dog pancreas translation system synthesizes two pheromone related polypeptides, a cytosolically located primary translation product (pp-alpha-Fcyt, 21 kDa) and a membrane-specific and multiply glycosylated alpha-factor precursor (pp-alpha-F3, 27.5 kDa). Glycosylation of the membrane specific pp-alpha-F3 species is competitively inhibited by synthetic peptides containing the consensus sequence Asn-Xaa-Thr as indicated by a shift of its molecular mass from 27.5 kDa to about 19.5 kDa (pp-alpha-F0), whereas the primary translation product pp-alpha-Fcyt is not affected. Likewise, only the glycosylated pp-alpha-F3 structure is digested by Endo H yielding a polypeptide with a molecular mass between pp-alpha-F0 and pp-alpha-Fcyt. These observations strongly suggest that the primary translation product is proteolytically processed during/on its translocation into the lumen of the microsomal vesicles. We believe that this proteolytic processing is due to the cleavage of a signal sequence from the pp-alpha-Fcyt species, although this interpretation contradicts previous data from other groups. The distinct effect exerted by various glycosidase inhibitors (e.g. 1-deoxynojirimycin, N-methyl-dNM, 1-deoxymannojirimycin) on the electrophoretic mobility of the pp-alpha-F3 polypeptide indicates that its oligosaccharide chains are processed to presumably Man9-GlcNAc2 structures under the in vitro conditions of translation. This oligosaccharide processing is most likely to involve the action of glucosidase I and glucosidase II as follows from the specificity of the glycosidase inhibitors applied and the differences of the molecular mass observed in their presence.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Pâncreas/enzimologia , Processamento de Proteína Pós-Traducional , alfa-Glucosidases/metabolismo , Animais , Cães , Retículo Endoplasmático/metabolismo , Proteínas Fúngicas/metabolismo , Inibidores de Glicosídeo Hidrolases , Glicosilação , Fator de Acasalamento , Peptídeos/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA