Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(16): e2400149, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38973657

RESUMO

A combination of atomistic molecular dynamics (aMD) simulations and circular dichroism (CD) analysis is used to explore supramolecular structures of amphiphilic ABA-type triblock polymer peptide conjugates (PPC). Using the example of a recently introduced PPC with pH- and temperature responsive self-assembling behavior [Otter et al., Macromolecular Rapid Communications 2018, 39, 1800459], this study shows how molecular dynamics simulations of simplified fragment molecules can add crucial information to CD data, which helps to correctly identify the self-assembled structures and monitor the folding/unfolding pathways of the molecules. The findings offer insights into the nature of structural transitions induced by external stimuli, thus contributing to the understanding of the connection of microscopic structures with macroscopic properties.


Assuntos
Dicroísmo Circular , Simulação de Dinâmica Molecular , Peptídeos , Polímeros , Peptídeos/química , Polímeros/química , Temperatura , Concentração de Íons de Hidrogênio
2.
Biomacromolecules ; 25(5): 2659-2678, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38663862

RESUMO

Peptide-polymer conjugates (PPCs) are of particular interest in the development of responsive, adaptive, and interactive materials due to the benefits offered by combining both building blocks and components. This review presents pioneering work as well as recent advances in the design of peptide-polymer conjugates, with a specific focus on their thermoresponsive behavior. This unique class of materials has shown great promise in the development of supramolecular structures with physicochemical properties that are modulated using soft and biorthogonal external stimuli. The temperature-induced self-assembly of PPCs into various supramolecular architectures, gelation processes, and tuning of accessible processing parameters to biologically relevant temperature windows are described. The discussion covers the chemical design of the conjugates, the supramolecular driving forces involved, and the mutual influence of the polymer and peptide segments. Additionally, some selected examples for potential biomedical applications of thermoresponsive PPCs in tissue engineering, delivery systems, tumor therapy, and biosensing are highlighted, as well as perspectives on future challenges.


Assuntos
Peptídeos , Polímeros , Géis/química , Peptídeos/química , Polímeros/química , Temperatura , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA