Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 541, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35662277

RESUMO

Charcot-Marie-Tooth (CMT) disease 4A is an autosomal-recessive polyneuropathy caused by mutations of ganglioside-induced differentiation-associated protein 1 (GDAP1), a putative glutathione transferase, which affects mitochondrial shape and alters cellular Ca2+ homeostasis. Here, we identify the underlying mechanism. We found that patient-derived motoneurons and GDAP1 knockdown SH-SY5Y cells display two phenotypes: more tubular mitochondria and a metabolism characterized by glutamine dependence and fewer cytosolic lipid droplets. GDAP1 interacts with the actin-depolymerizing protein Cofilin-1 and beta-tubulin in a redox-dependent manner, suggesting a role for actin signaling. Consistently, GDAP1 loss causes less F-actin close to mitochondria, which restricts mitochondrial localization of the fission factor dynamin-related protein 1, instigating tubularity. GDAP1 silencing also disrupts mitochondria-ER contact sites. These changes result in lower mitochondrial Ca2+ levels and inhibition of the pyruvate dehydrogenase complex, explaining the metabolic changes upon GDAP1 loss of function. Together, our findings reconcile GDAP1-associated phenotypes and implicate disrupted actin signaling in CMT4A pathophysiology.


Assuntos
Actinas , Proteínas do Tecido Nervoso/metabolismo , Neuroblastoma , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Mitocôndrias/metabolismo , Neuroblastoma/metabolismo , Complexo Piruvato Desidrogenase/metabolismo
2.
Insect Biochem Mol Biol ; 119: 103324, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31978587

RESUMO

Polycistronic expression systems in insects can be used for applications such as recombinant protein production in cells, enhanced transgenesis methods, and the development of novel pest-control strategies based on the sterile insect technique (SIT). Here we tested the performance of four picornaviral 2A self-cleaving peptides (TaV-2A, DrosCV-2A, FMDV 2A1/31 and FMDV 2A1/32) for the co-expression and differential subcellular targeting of two fluorescent marker proteins in cell lines (Anastrepha suspensa AsE01 and Drosophila melanogaster S2 cells). We found that all four 2A peptides showed comparable activity in cell lines, leading to the production of independent upstream and downstream proteins that were directed to the nucleus or membrane by a C-terminal nuclear localization signal (NLS) on the upstream protein and a poly-lysine/CAAX membrane anchor on the downstream protein. TaV-2A and DrosCV-2A were inserted into piggyBac constructs to create transgenic D. suzukii strains, confirming efficient ribosomal skipping in vivo. Interestingly, we found that the EGFP-CAAX protein was distributed homogeneously in the membrane whereas the DsRed-CAAX protein formed clumps and aggregates that induced extensive membrane blebbing. Accordingly, only flies expressing the DsRed-NLS and EGFP-CAAX proteins could be bred to homozygosity whereas expression of EGFP-NLS and DsRed-CAAX was lethal in the homozygous state. Our results therefore demonstrate that the 2A constructs and two novel targeting motifs are functional in D. suzukii, and that the combination of EGFP-NLS and DsRed-CAAX shows dosage-dependent lethality. These molecular elements could be further used to improve expression systems in insects and generate novel pest control strains.


Assuntos
Drosophila/genética , Expressão Gênica , Proteínas de Insetos/genética , Picornaviridae/metabolismo , Tephritidae/genética , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Linhagem Celular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Insetos/metabolismo , Proteínas Luminescentes/química , Peptídeos , Tephritidae/metabolismo , Proteínas Virais/metabolismo , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA