Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 133: 118-137, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37451782

RESUMO

The chemical composition of PM2.5 at two sites in Lebanon, a country in the East Mediterranean - Middle East region, is investigated in the spring and summer seasons. The average PM2.5 concentrations were of (29 ± 16) µg/m3 for Beirut urban site and (32 ± 14) µg/m3 for Beirut suburban site. This study showed that the geographic location of the East Mediterranean region, such as its proximity to the Mediterranean Sea and the dust storm intrusion are a significant contributor to the high PM levels from natural sources, which cannot be mitigated, rendering the PM2.5 WHO annual Air Quality guideline unattainable due to high natural background, which also applies to the entire Middle East region. Turkey and Eastern Europe are the dominant origin of air masses throughout our sampling days, suggesting the long-range transport as an important potential contributor to the high observed concentrations of V, Ni, and sulfate in this region most probably in other East Mediterranean countries than Lebanon too. Main local sources determined through the chemical speciation including organics are road transport, resuspension of dust and diesel private generators. A health risk assessment of airborne metals was performed and the carcinogenic risk for all the metals exceeded by 42 (adults) and 14 (children) times the acceptable risk level (10-6) at both sites. Vanadium was the predominant carcinogenic metal, emphasizing the need to replace energy production with cleaner energy on a regional level and highlighting the severe impact of air pollution on the health of inhabitants in this region's main cities.


Assuntos
Poluentes Atmosféricos , Adulto , Criança , Humanos , Poluentes Atmosféricos/análise , Cidades , Emissões de Veículos/análise , Líbano , Monitoramento Ambiental , Poeira/análise , Estações do Ano , Material Particulado/análise
2.
J Hazard Mater ; 439: 129544, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35908394

RESUMO

The present study investigated comprehensively the atmospheric occurrence and fate of an extensive range of polychlorinated biphenyls (PCBs; forty-two congeners), organochlorine pesticides (OCPs; twenty-seven emerging and legacy agrochemicals) and polycyclic aromatic hydrocarbons (PAHs; fifty parent and alkylated members, including the non USEPA-16 listed toxic ones), in both gas and particulate phase of the scarcely monitored atmosphere over Cyprus for the first time. Parent-metabolite concentration ratios suggested fresh application for dichlorodiphenyl-trichloroethanes (DDTs), dicofol, hexachlorocyclohexanes, endosulfan and chlorothalonil, particularly during spring (April-May). Regressions of logarithms of partial pressure against ambient temperature revealed that secondary recycling from contaminated terrestrial surfaces regulates the atmospheric level variability of PCBs, DDTs, aldrin, chlordane, dicofol, heptachlor and endosulfan. Enthalpies of surface-air exchange (∆HSA) calculated from Clausius-Clapeyron equations were significantly correlated to vaporization enthalpies (∆HV) determined by chromatographic techniques, corroborating presence of potential stockpile-contaminated sites around the study area. The Harner-Bidleman equilibrium model simulating urban areas, and the Li-Jia empirical model, predicted better the partitioning behavior of PAHs (

Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Clorados , Praguicidas , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Chipre , Dicofol/análise , Endossulfano , Monitoramento Ambiental/métodos , Humanos , Hidrocarbonetos Clorados/análise , Meteorologia , Praguicidas/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise
3.
Toxicol In Vitro ; 27(2): 533-42, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23159501

RESUMO

Chronic exposure to atmospheric particles is suspected of exacerbating chronic inflammatory respiratory diseases but the underlying mechanisms remain poorly understood. An experimental strategy using human bronchial epithelial cells (NHBE) known to be one of the main target cells of particles in the lung was developed to investigate the long term effects of repeated exposure to particles. Primary cultures of NHBE cells were grown at an air-liquid interface and subjected to repeated treatments to particles. Fate of particles, pro inflammatory response and epithelial differentiation were studied during the 5 weeks following the final treatment. Ultrastructural observations revealed the biopersistence of particles in the bronchial epithelium. The expression of cytochrome P450 1A1, was transiently induced, suggesting that organic compounds could have been metabolized. The release of GM-CSF and IL-6 (biomarkers of pro-inflammatory response), was induced by particle treatments and was maintained up to 5weeks after treatments. The release of amphiregulin and TGFα (Growth Factor) was induced after each treatment. The number of cells expressing the mucin MUC5AC, a differentiation marker, was increased in particle-exposed epithelium. The experimental strategy we developed is suitable for investigating in greater depth the long term effects of particles on bronchial epithelial cells repeatedly exposed to atmospheric particles in vitro.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Testes de Toxicidade/métodos , Brônquios , Linhagem Celular Tumoral , Citocromo P-450 CYP1A1/genética , Citocinas/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Material Particulado/administração & dosagem , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/ultraestrutura
4.
Philos Trans A Math Phys Eng Sci ; 363(1826): 187-9, 2005 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-15598631

RESUMO

Dimethylsulphide (DMS) in the atmosphere may play an important role in the climate system. This study shows an inverse relationship between ultraviolet extremes and atmospheric DMS, independent of changes in wind speed, sea-surface temperature and photosynthetically active radiation, as measured at Amsterdam Island in the Southern Indian Ocean.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA