Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Crit Care ; 28(1): 88, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504349

RESUMO

BACKGROUND: Sepsis is a life-threatening condition arising from an aberrant host response to infection. Recent single-cell RNA sequencing investigations identified an immature bone-marrow-derived CD14+ monocyte phenotype with immune suppressive properties termed "monocyte state 1" (MS1) in patients with sepsis. Our objective was to determine the association of MS1 cell profiles with disease presentation, outcomes, and host response characteristics. METHODS: We used the transcriptome deconvolution method (CIBERSORTx) to estimate the percentage of MS1 cells from blood RNA profiles of patients with sepsis admitted to the intensive care unit (ICU). We compared these profiles to ICU patients without infection and to healthy controls. Host response dysregulation was further studied by gene co-expression network and gene set enrichment analyses of blood leukocytes, and measurement of 15 plasma biomarkers indicative of pathways implicated in sepsis pathogenesis. RESULTS: Sepsis patients (n = 332) were divided into three equally-sized groups based on their MS1 cell levels (low, intermediate, and high). MS1 groups did not differ in demographics or comorbidities. The intermediate and high MS1 groups presented with higher disease severity and more often had shock. MS1 cell abundance did not differ between survivors and non-survivors, or between patients who did or did not acquire a secondary infection. Higher MS1 cell percentages were associated with downregulation of lymphocyte-related and interferon response genes in blood leukocytes, with concurrent upregulation of inflammatory response pathways, including tumor necrosis factor signaling via nuclear factor-κB. Previously described sepsis host response transcriptomic subtypes showed different MS1 cell abundances, and MS1 cell percentages positively correlated with the "quantitative sepsis response signature" and "molecular degree of perturbation" scores. Plasma biomarker levels, indicative of inflammation, endothelial cell activation, and coagulation activation, were largely similar between MS1 groups. In ICU patients without infection (n = 215), MS1 cell percentages and their relation with disease severity, shock, and host response dysregulation were highly similar to those in sepsis patients. CONCLUSIONS: High MS1 cell percentages are associated with increased disease severity and shock in critically ill patients with sepsis or a non-infectious condition. High MS1 cell abundance likely indicates broad immune dysregulation, entailing not only immunosuppression but also anomalies reflecting exaggerated inflammatory responses.


Assuntos
Monócitos , Sepse , Humanos , Estado Terminal , Sepse/complicações , Biomarcadores , Leucócitos , Unidades de Terapia Intensiva
2.
EMBO J ; 43(8): 1445-1483, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499786

RESUMO

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor. Here, we establish that human and mouse TREG cells express Fe-regulatory genes, including that encoding ferritin heavy chain (FTH), at relatively high levels compared to conventional T helper cells. We show that FTH expression in TREG cells is essential for immune homeostasis. Mechanistically, FTH supports TET-catalyzed demethylation of CpG-rich sequences CNS1 and 2 in the FOXP3 locus, thereby promoting FOXP3 transcription and TREG cell stability. This process, which is essential for TREG lineage stability and function, limits the severity of autoimmune neuroinflammation and infectious diseases, and favors tumor progression. These findings suggest that the regulation of intracellular iron by FTH is a stable property of TREG cells that supports immune homeostasis and limits the pathological outcomes of immune-mediated inflammation.


Assuntos
Apoferritinas , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Apoferritinas/genética , Apoferritinas/metabolismo , Linhagem da Célula/genética , Citosina/metabolismo , Fatores de Transcrição Forkhead , Ferro/metabolismo
3.
Life Sci ; 336: 122340, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092143

RESUMO

AIMS: Structural cells play an important role in regulating immune cells during infection. Our aim was to determine whether structural porcine tracheal epithelial cells (PTECs) can regulate alveolar macrophages (AMs) to prevent bacterial pneumonia, explore the underlying mechanism(s) and therapeutic target. MATERIALS AND METHODS: Actinobacillus pleuropneumoniae (APP) was used as the model strain for infection studies. Small RNA sequencing was used to identify differentially abundant exosome-derived miRNAs. The role of PTECs exosome-derived miR-21-5p in regulating AMs autophagy, pyroptosis, reactive oxygen species (ROS) was determined using RT-qPCR, western-blotting, flow cytometry, immunohistochemistry. Luciferase reporter assays were conducted to identify potential binding targets of miR-21-5p. The universality of miR-21-5p action on resistance to bacterial pulmonary infection was demonstrated using Klebsiella pneumoniae or Staphylococcus aureus in vitro and in vivo infection models. KEY FINDINGS: MiR-21-5p was enriched in PETCs-derived exosomes, which protected AMs against pulmonary bacterial infection. Mechanistically, miR-21-5p targeted PIK3CD, to promote autophagy of AMs, which reduced the pyroptosis induced by APP infection via inhibiting the over-production of ROS, which in turn suppressed the over-expression of pro-inflammatory cytokines, and increased bacterial clearance. Importantly, the protective effect and mechanism of miR-21-5p were universal as they also occurred upon challenge with Klebsiella pneumoniae and Staphylococcus aureus. SIGNIFICANCE: Our data reveals miR-21-5p can promote pulmonary resistance to bacterial infection by inhibiting pyroptosis of alveolar macrophages through the PIK3CD-autophagy-ROS pathway, suggesting PIK3CD may be a potential therapeutic target for bacterial pneumonia.


Assuntos
Exossomos , MicroRNAs , Pneumonia Bacteriana , Animais , Suínos , Piroptose , Macrófagos Alveolares/metabolismo , Exossomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Autofagia/genética
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166519, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964875

RESUMO

BACKGROUND: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions. OBJECTIVE: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function. METHODS: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1ß and IL-10. RESULTS: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1ß and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS. CONCLUSION: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.


Assuntos
Monócitos , Pneumonia , Citocinas/metabolismo , Humanos , Interleucina-10/metabolismo , Espaço Intracelular , Lipopolissacarídeos/farmacologia , Monócitos/metabolismo , Pneumonia/metabolismo , Piruvato Quinase/metabolismo , Ácido Pirúvico/metabolismo , Ácidos Tricarboxílicos , Fator de Necrose Tumoral alfa/metabolismo
5.
PLoS One ; 17(7): e0271637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35877767

RESUMO

OBJECTIVE: Patients admitted to the Intensive Care Unit (ICU) oftentimes show immunological signs of immune suppression. Consequently, immune stimulatory agents have been proposed as an adjunctive therapy approach in the ICU. The objective of this study was to determine the relationship between the degree of immune suppression and systemic inflammation in patients shortly after admission to the ICU. Design: An observational study in two ICUs in the Netherlands. METHODS: The capacity of blood leukocytes to produce cytokines upon stimulation with lipopolysaccharide (LPS) was measured in 77 patients on the first morning after ICU admission. Patients were divided in four groups based on quartiles of LPS stimulated tumor necrosis factor (TNF)-α release, reflecting increasing extents of immune suppression. 15 host response biomarkers indicative of aberrations in inflammatory pathways implicated in sepsis pathogenesis were measured in plasma. RESULTS: A diminished capacity of blood leukocytes to produce TNF-α upon stimulation with LPS was accompanied by a correspondingly reduced ability to release of IL-1ß and IL-6. Concurrently measured plasma concentrations of host response biomarkers demonstrated that the degree of reduction in TNF-α release by blood leukocytes was associated with increasing systemic inflammation, stronger endothelial cell activation, loss of endothelial barrier integrity and enhanced procoagulant responses. CONCLUSIONS: In patients admitted to the ICU the strongest immune suppression occurs in those who simultaneously display signs of stronger systemic inflammation. These findings may have relevance for the selection of patients eligible for administration of immune enhancing agents. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01905033.


Assuntos
Estado Terminal , Lipopolissacarídeos , Biomarcadores , Humanos , Inflamação , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa
6.
Front Cell Infect Microbiol ; 12: 934313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903199

RESUMO

Monocytes are key players in innate immunity, with their ability to regulate inflammatory responses and combat invading pathogens. There is a growing body of evidence indicating that long non-coding RNA (lncRNA) participate in various cellular biological processes, including the innate immune response. The immunoregulatory properties of numerous lncRNAs discovered in monocytes remain largely unexplored. Here, by RNA sequencing, we identified a lncRNA JHDM1D-AS1, which was upregulated in blood monocytes obtained from patients with sepsis relative to healthy controls. JHDM1D-AS1 expression was induced in primary human monocytes exposed to Toll-like receptor ligands, such as lipopolysaccharide (LPS), or bacteria. The inducibility of JHDM1D-AS1 expression in monocytes depended, at least in part, on nuclear factor-κB activation. JHDM1D-AS1 knockdown experiments in human monocyte-derived macrophages revealed significantly enhanced expression of inflammatory mediators, before and after exposure to LPS, relative to control cells. Specifically, genes involved in inflammatory responses were upregulated (e.g., CXCL2, CXCL8, IL1RN, TREM1, TNF, and IL6), whereas genes involved in anti-inflammatory pathways were downregulated (e.g., SOCS1 and IL10RA). JHDM1D-AS1 overexpression in a pro-monocytic cell line revealed diminished pro-inflammatory responses subsequent to LPS challenge. Collectively, these findings identify JHDM1D-AS1 as a potential anti-inflammatory mediator induced in response to inflammatory stimuli.


Assuntos
RNA Longo não Codificante , Humanos , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Monócitos , RNA Antissenso/metabolismo , RNA Longo não Codificante/metabolismo
7.
Respir Res ; 23(1): 162, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725453

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and severe disease characterized by excessive matrix deposition in the lungs. Macrophages play crucial roles in maintaining lung homeostasis but are also central in the pathogenesis of lung diseases like pulmonary fibrosis. Especially, macrophage polarization/activation seems to play a crucial role in pathology and epigenetic reprograming is well-known to regulate macrophage polarization. DNA methylation alterations in IPF lungs have been well documented, but the role of DNA methylation in specific cell types, especially macrophages, is poorly defined. METHODS: In order to determine the role of DNA methylation in macrophages during pulmonary fibrosis, we subjected macrophage specific DNA methyltransferase (DNMT)3B, which mediates the de novo DNA methylation, deficient mice to the bleomycin-induced pulmonary fibrosis model. Macrophage polarization and fibrotic parameters were evaluated at 21 days after bleomycin administration. Dnmt3b knockout and wild type bone marrow-derived macrophages were stimulated with either interleukin (IL)4 or transforming growth factor beta 1 (TGFB1) in vitro, after which profibrotic gene expression and DNA methylation at the Arg1 promotor were determined. RESULTS: We show that DNMT3B deficiency promotes alternative macrophage polarization induced by IL4 and TGFB1 in vitro and also enhances profibrotic macrophage polarization in the alveolar space during pulmonary fibrosis in vivo. Moreover, myeloid specific deletion of DNMT3B promoted the development of experimental pulmonary fibrosis. CONCLUSIONS: In summary, these data suggest that myeloid DNMT3B represses fibrotic macrophage polarization and protects against bleomycin induced pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática , Ativação de Macrófagos , Animais , Bleomicina/toxicidade , DNA/metabolismo , Fibrose , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Cells ; 11(5)2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35269409

RESUMO

DNA methyltransferase 3b (Dnmt3b) has been suggested to play a role in the host immune response during bacterial infection. Neutrophils and other myeloid cells are crucial for lung defense against Pseudomonas (P.) aeruginosa infection. This study aimed to investigate the role of Dnmt3b in neutrophils and myeloid cells during acute pneumonia caused by P. aeruginosa. Neutrophil-specific (Dnmt3bfl/flMrp8Cre) or myeloid cell-specific (Dnmt3bfl/flLysMCre) Dnmt3b-deficient mice and littermate control mice were infected with P. aeruginosa PAK via the airways. Bacteria burdens, neutrophil recruitment, and activation (CD11b expression, myeloperoxidase, and elastase levels), interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF) were measured in bronchoalveolar lavage fluid (BALF) at 6 and 24 h after infection. Our data showed that the bacterial loads and neutrophil recruitment and activation did not differ in BALF obtained from neutrophil-specific Dnmt3b-deficient and control mice, whilst BALF IL-6 and TNF levels were lower in the former group at 24 but not at 6 h after infection. None of the host response parameters measured differed between myeloid cell-specific Dnmt3b-deficient and control mice. In conclusion, dnmt3b deficiency in neutrophils or myeloid cells does not affect acute immune responses in the airways during Pseudomonas pneumonia.


Assuntos
Pneumonia , Infecções por Pseudomonas , Animais , DNA (Citosina-5-)-Metiltransferases , Imunidade , Interleucina-6/metabolismo , Camundongos , Neutrófilos/metabolismo , Pneumonia/patologia , Pseudomonas , Pseudomonas aeruginosa/fisiologia , DNA Metiltransferase 3B
9.
Cell Mol Neurobiol ; 42(8): 2863-2892, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34709498

RESUMO

Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.


Assuntos
Astrocitoma , Esclerose Tuberosa , Humanos , Astrocitoma/metabolismo , Metilação de DNA/genética , Sirolimo/uso terapêutico , Esclerose Tuberosa/complicações , Esclerose Tuberosa/genética , Esclerose Tuberosa/patologia
10.
Front Immunol ; 12: 744358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804025

RESUMO

Our previous work identified human immunodeficiency virus type I enhancer binding protein 1 (HIVEP1) as a putative driver of LPS-induced NF-κB signaling in humans in vivo. While HIVEP1 is known to interact with NF-ĸB binding DNA motifs, its function in mammalian cells is unknown. We report increased HIVEP1 mRNA expression in monocytes from patients with sepsis and monocytes stimulated by Toll-like receptor agonists and bacteria. In complementary overexpression and gene deletion experiments HIVEP1 was shown to inhibit NF-ĸB activity and induction of NF-ĸB responsive genes. RNA sequencing demonstrated profound transcriptomic changes in HIVEP1 deficient monocytic cells and transcription factor binding site analysis showed enrichment for κB site regions. HIVEP1 bound to the promoter regions of NF-ĸB responsive genes. Inhibition of cytokine production by HIVEP1 was confirmed in LPS-stimulated murine Hivep1-/- macrophages and HIVEP1 knockdown zebrafish exposed to the common sepsis pathogen Streptococcus pneumoniae. These results identify HIVEP1 as a negative regulator of NF-κB in monocytes/macrophages that inhibits proinflammatory reactions in response to bacterial agonists in vitro and in vivo.


Assuntos
Proteínas de Ligação a DNA/imunologia , Inflamação/imunologia , Macrófagos/imunologia , NF-kappa B/imunologia , Sepse/imunologia , Fatores de Transcrição/imunologia , Animais , Proteínas de Ligação a DNA/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , NF-kappa B/metabolismo , Sepse/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra
11.
Ann Intensive Care ; 11(1): 142, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34585271

RESUMO

BACKGROUND: A delay in admission to the intensive care unit (ICU) of patients with community-acquired pneumonia (CAP) has been associated with an increased mortality. Decisions regarding interventions and eligibility for immune modulatory therapy are often made at the time of admission to the ICU. The primary aim of this study was to compare the host immune response measured upon ICU admission in CAP patients admitted immediately from the emergency department (direct ICU admission) with those who were transferred within 72 h after admission to the general ward (delayed ICU admission). METHODS: Sixteen host response biomarkers providing insight in pathophysiological mechanisms implicated in sepsis and blood leukocyte transcriptomes were analysed in patients with CAP upon ICU admission in two tertiary hospitals in the Netherlands. RESULTS: Of 530 ICU admissions with CAP, 387 (73.0%) were directly admitted and 143 (27.0%) had a delayed admission. Patients with a delayed ICU admission were more often immunocompromised (35.0 versus 21.2%, P = .002) and had more malignancies (23.1 versus 13.4%, P = .011). Shock was more present in patients who were admitted to the ICU directly (46.6 versus 33.6%, P = .010). Delayed ICU admission was not associated with an increased hospital mortality risk (hazard ratio 1.25, 95% CI 0.89-1.78, P = .20). The plasma levels of biomarkers (n = 297) reflecting systemic inflammation, endothelial cell activation and coagulation activation were largely similar between groups, with exception of C-reactive protein, soluble intercellular adhesion molecule-1 and angiopoietin-1, which were more aberrant in delayed admissions compared to direct ICU admissions. Blood leukocyte transcriptomes (n = 132) of patients with a delayed ICU admission showed blunted innate and adaptive immune response signalling when compared with direct ICU admissions, as well as decreased gene expression associated with tissue repair and extracellular matrix remodelling pathways. CONCLUSIONS: Blood leukocytes of CAP patients with delayed ICU admission show evidence of a more immune suppressive phenotype upon ICU admission when compared with blood leukocytes from patients directly transferred to the ICU. TRIAL REGISTRATION: Molecular Diagnosis and Risk Stratification of Sepsis (MARS) project, ClinicalTrials.gov identifier NCT01905033.

12.
Nature ; 594(7863): 436-441, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079128

RESUMO

A delicate equilibrium of WNT agonists and antagonists in the intestinal stem cell (ISC) niche is critical to maintaining the ISC compartment, as it accommodates the rapid renewal of the gut lining. Disruption of this balance by mutations in the tumour suppressor gene APC, which are found in approximately 80% of all human colon cancers, leads to unrestrained activation of the WNT pathway1,2. It has previously been established that Apc-mutant cells have a competitive advantage over wild-type ISCs3. Consequently, Apc-mutant ISCs frequently outcompete all wild-type stem cells within a crypt, thereby reaching clonal fixation in the tissue and initiating cancer formation. However, whether the increased relative fitness of Apc-mutant ISCs involves only cell-intrinsic features or whether Apc mutants are actively involved in the elimination of their wild-type neighbours remains unresolved. Here we show that Apc-mutant ISCs function as bona fide supercompetitors by secreting WNT antagonists, thereby inducing differentiation of neighbouring wild-type ISCs. Lithium chloride prevented the expansion of Apc-mutant clones and the formation of adenomas by rendering wild-type ISCs insensitive to WNT antagonists through downstream activation of WNT by inhibition of GSK3ß. Our work suggests that boosting the fitness of healthy cells to limit the expansion of pre-malignant clones may be a powerful strategy to limit the formation of cancers in high-risk individuals.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Competição entre as Células , Genes APC , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Mutação , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/deficiência , Animais , Diferenciação Celular/genética , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Neoplasias Intestinais/metabolismo , Cloreto de Lítio/farmacologia , Masculino , Camundongos , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
13.
Mol Oncol ; 15(11): 3091-3108, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33932087

RESUMO

Pancreatic acinar cells have high plasticity and can transdifferentiate into ductal-like cells. This acinar-to-ductal metaplasia (ADM) contributes to tissue maintenance but may also contribute to the premalignant transformation that can eventually progress to pancreatic ductal adenocarcinoma (PDAC). Macrophages are key players in ADM, and macrophage-secreted matrix metalloproteinase (MMP)-9 induces ADM through yet unknown mechanisms. As we previously identified MMP9 as a novel agonist of protease-activated receptor 1 (PAR1), a receptor that is known to orchestrate the cross-talk between macrophages and tumor cells in PDAC, we here assessed the contribution of PAR1 to pancreatic cell fates. We found that genetic deficiency for PAR1 increases acinar gene expression programs in the healthy pancreas and that PAR1 deficiency limits ductal transdifferentiation in experimental systems for ADM. Moreover, PAR1 silencing in PDAC cells increases acinar marker expression. Changes in PDAC cell lines were associated with a downregulation of known Myc-target genes, and Myc inhibition mimics PAR1 deficiency in enhancing acinar programs in healthy organoids and PDAC cells. Overall, we identify the PAR1-Myc axis as a driver of ductal cell fates in premalignant pancreas and PDAC. Moreover, we show that cellular plasticity is not unique to acinar cells and that ductal regeneration into acinar-like cells is possible even in the context of oncogenic KRAS activation.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/patologia , Humanos , Pâncreas/patologia , Neoplasias Pancreáticas/patologia , Receptor PAR-1/genética , Receptor PAR-1/metabolismo
14.
Crit Care Med ; 49(11): 1901-1911, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33935163

RESUMO

OBJECTIVES: Plasma ferritin levels above 4,420 ng/mL have been proposed as a diagnostic marker for macrophage activation-like syndrome in sepsis and used for selection of sepsis patients for anti-inflammatory therapy. We here sought to determine the frequency, presentation, outcome, and host response aberrations of macrophage activation-like syndrome, as defined by admission ferritin levels above 4,420 ng/mL, in critically ill patients with community-acquired pneumonia. DESIGN: A prospective observational cohort study. SETTING: ICUs in two tertiary hospitals in the Netherlands. PATIENTS: One hundred fifty-three patients admitted with community-acquired pneumonia. MEASUREMENTS AND MAIN RESULTS: Patients were stratified in community-acquired pneumonia-macrophage activation-like syndrome (n = 15; 9.8%) and community-acquired pneumonia-control groups (n = 138; 90.2%) based on an admission plasma ferritin level above or below 4,420 ng/mL, respectively. Community-acquired pneumonia-macrophage activation-like syndrome patients presented with a higher disease severity and had a higher ICU mortality (46.7% vs 12.3% in community-acquired pneumonia-controls; p = 0.002). Twenty-three plasma biomarkers indicative of dysregulation of key host response pathways implicated in sepsis pathogenesis (systemic inflammation, cytokine responses, endothelial cell activation, and barrier function, coagulation activation) were more disturbed in community-acquired pneumonia-macrophage activation-like syndrome patients. Hematologic malignancies were overrepresented in community-acquired pneumonia-macrophage activation-like syndrome patients (33.3% vs 5.1% in community-acquired pneumonia-controls; p = 0.001). In a subgroup analysis excluding patients with hematologic malignancies (n = 141), differences in mortality were not present anymore, but the exaggerated host response abnormalities in community-acquired pneumonia-macrophage activation-like syndrome patients remained. CONCLUSIONS: Macrophage activation-like syndrome in critically ill patients with community-acquired pneumonia occurs more often in patients with hematologic malignancies and is associated with deregulation of multiple host response pathways.


Assuntos
Infecções Comunitárias Adquiridas/sangue , Estado Terminal/terapia , Ferritinas/sangue , Ativação de Macrófagos , Pneumonia Bacteriana/sangue , Idoso , Biomarcadores/sangue , Estudos de Coortes , Infecções Comunitárias Adquiridas/terapia , Humanos , Unidades de Terapia Intensiva , Masculino , Pessoa de Meia-Idade , Países Baixos , Pneumonia Bacteriana/terapia , Estudos Prospectivos , Índice de Gravidade de Doença
15.
FASEB J ; 35(5): e21599, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913570

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of unknown etiology with minimal treatment options. Repetitive alveolar epithelial injury has been suggested as one of the causative mechanisms of this disease. Type 2 alveolar epithelial cells (AEC2) play a crucial role during fibrosis by functioning as stem cells able to repair epithelial damage. The DNA demethylase Tet methylcytosine dioxygenase 2 (TET2) regulates the stemness of multiple types of stem cells, but whether it also affects the stemness of AEC2 during fibrosis remains elusive. To study the role of TET2 in AEC2 during fibrosis, we first determined TET2 protein levels in the lungs of IPF patients and compared TET2 expression in AEC2 of IPF patients and controls using publicly available data sets. Subsequently, pulmonary fibrosis was induced by the intranasal administration of bleomycin to wild-type and AEC2-specific TET2 knockout mice to determine the role of TET2 in vivo. Fibrosis was assessed by hydroxyproline analysis and fibrotic gene expression. Additionally, macrophage recruitment and activation, and epithelial injury were analyzed. TET2 protein levels and gene expression were downregulated in IPF lungs and AEC2, respectively. Bleomycin inoculation induced a robust fibrotic response as indicated by increased hydroxyproline levels and increased expression of pro-fibrotic genes. Additionally, increased macrophage recruitment and both M1 and M2 activation were observed. None of these parameters were, however, affected by AEC2-specific TET2 deficiency. TET2 expression is reduced in IPF, but the absence of TET2 in AEC2 cells does not affect the development of bleomycin-induced pulmonary fibrosis.


Assuntos
Células Epiteliais Alveolares/metabolismo , Bleomicina/toxicidade , Movimento Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Fibrose Pulmonar Idiopática/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Animais , Antibióticos Antineoplásicos/toxicidade , Proteínas de Ligação a DNA/genética , Dioxigenases , Humanos , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética
17.
Sci Immunol ; 6(55)2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514640

RESUMO

Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.


Assuntos
Asma/tratamento farmacológico , Glucocorticoides/farmacologia , Antígenos Comuns de Leucócito/metabolismo , Linfócitos/imunologia , Pólipos Nasais/tratamento farmacológico , Adolescente , Adulto , Idoso , Asma/diagnóstico , Asma/imunologia , Resistência a Medicamentos/imunologia , Feminino , Glucocorticoides/uso terapêutico , Humanos , Imunidade Inata , Linfócitos/metabolismo , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/imunologia , Índice de Gravidade de Doença , Adulto Jovem
18.
Cells ; 11(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011643

RESUMO

Tet methylcytosine dioxygenase 2 (Tet2) mediates demethylation of DNA. We here sought to determine the expression and function of Tet2 in macrophages upon exposure to lipopolysaccharide (LPS), and in the host response to LPS induced lung and peritoneal inflammation, and during Escherichia (E.) coli induced peritonitis. LPS induced Tet2 expression in mouse macrophages and human monocytes in vitro, as well as in human alveolar macrophages after bronchial instillation in vivo. Bone marrow-derived macrophages from myeloid Tet2 deficient (Tet2fl/flLysMCre) mice displayed enhanced production of IL-1ß, IL-6 and CXCL1 upon stimulation with several Toll-like receptor agonists; similar results were obtained with LPS stimulated alveolar and peritoneal macrophages. Histone deacetylation was involved in the effect of Tet2 on IL-6 production, whilst methylation at the Il6 promoter was not altered by Tet2 deficiency. Tet2fl/flLysMCre mice showed higher IL-6 and TNF levels in bronchoalveolar and peritoneal lavage fluid after intranasal and intraperitoneal LPS administration, respectively, whilst other inflammatory responses were unaltered. E. coli induced stronger production of IL-1ß and IL-6 by Tet2 deficient peritoneal macrophages but not in peritoneal lavage fluid of Tet2fl/flLysMCre mice after in vivo intraperitoneal infection. Tet2fl/flLysMCre mice displayed enhanced bacterial growth during E. coli peritonitis, which was associated with a reduced capacity of Tet2fl/flLysMCre peritoneal macrophages to inhibit the growth of E. coli in vitro. Collectively, these data suggest that Tet2 is involved in the regulation of macrophage functions triggered by LPS and during E. coli infection.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Dioxigenases/metabolismo , Escherichia coli/fisiologia , Inflamação/patologia , Pulmão/patologia , Células Mieloides/metabolismo , Peritonite/patologia , Animais , Antibacterianos/metabolismo , Quimiocina CXCL1/metabolismo , Proteínas de Ligação a DNA/deficiência , Dioxigenases/deficiência , Regulação da Expressão Gênica , Células HEK293 , Histona Desacetilases/metabolismo , Humanos , Inflamação/genética , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ligantes , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Proteína Adaptadora de Sinalização NOD2/metabolismo , Peritonite/genética , Receptores Toll-Like/metabolismo
19.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33046509

RESUMO

Respiratory epithelial cells are important for pulmonary innate immune responses during Pseudomonas aeruginosa infection. Tet methylcytosine dioxygenase 2 (Tet2) has been implicated in the regulation of host defense by myeloid and lymphoid cells, but whether Tet2 also contributes to epithelial responses during pneumonia is unknown. The aim of this study was to investigate the role of bronchial epithelial Tet2 in acute pneumonia caused by P. aeruginosa To this end, we crossed mice with Tet2 flanked by two Lox-P sites (Tet2fl/fl mice) with mice expressing Cre recombinase under the bronchial epithelial cell-specific Cc10 promoter (Cc10Cre mice) to generate bronchial epithelial cell-specific Tet2-deficient (Tet2fl/fl Cc10Cre ) mice. Six hours after infection with P. aeruginosa,Tet2fl/fl Cc10Cre and wild-type mice had similar bacterial loads in bronchoalveolar lavage fluid (BALF). At this time point, Tet2fl/fl Cc10Cre mice displayed reduced mRNA levels of the chemokines Cxcl1, Cxcl2, and Ccl20 in bronchial brushes. However, Cxcl1, Cxcl2, and Ccl20 protein levels and leukocyte recruitment in BALF were not different between groups. Tet2fl/fl Cc10Cre mice had increased protein levels in BALF after infection, indicating a disturbed epithelial barrier function, which was corroborated by reduced mRNA expression of tight junction protein 1 and occludin in bronchial brushes. Differences detected between Tet2fl/fl Cc10Cre and wild-type mice were no longer present at 24 h after infection. These results suggest that bronchial epithelial Tet2 contributes to maintaining epithelial integrity by enhancing intracellular connections between epithelial cells during the early phase of P. aeruginosa pneumonia.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/fisiologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/microbiologia , Animais , Carga Bacteriana , Biomarcadores , Brônquios , Quimiocinas/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Camundongos , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/metabolismo , Infecções por Pseudomonas/metabolismo
20.
Cytokine ; 133: 155181, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32604005

RESUMO

Trefoil factor 3 (TFF3) is a small peptide secreted mainly by goblet cells in the gut, where it plays a key role in gastrointestinal defence and repair. Plasma TFF3 has been reported as a biomarker of intestinal injury and as such it has been evaluated as a marker of disease activity in colitis. Impaired gut barrier function has been postulated as the "motor" of critical illness. We here sought to determine the temporal dynamics of plasma TFF3 in adult patients admitted to intensive care unit with abdominal sepsis or after major abdominal surgery for a non-infectious condition (post-op GI patients). TFF3 was measured in plasma obtained from 143 patients with abdominal sepsis and 98 post-op GI patients on admission to the intensive care (day 0) and at days 2 and 4 thereafter. Abdominal sepsis patients showed sustained elevated plasma TFF3 levels from day 0 to 4 relative to healthy control values, while in post-op GI patients admission TFF3 levels were not increased, only rising at day 2 and 4. In both patient groups, the presence of shock was associated with higher TFF3 levels. Moreover, patients with 3 or more organs failing had higher plasma TFF3 concentrations. While plasma TFF3 was higher in sepsis patients who did not survive until day 30, TFF3 levels were not independently associated with 30-day mortality in a Cox regression analysis. These results could support the theory that intestinal injury contributes to the pathogenesis of critical illness. Future studies are needed to elucidate whether the proposed gut dysfunction precedes or supersedes organ dysfunction in time.


Assuntos
Abdome/patologia , Gastroenteropatias/sangue , Plasma/metabolismo , Sepse/sangue , Sepse/metabolismo , Fator Trefoil-3/sangue , Colite/sangue , Colite/metabolismo , Colite/patologia , Estado Terminal , Feminino , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Peptídeos/metabolismo , Estudos Prospectivos , Sepse/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA