Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37896056

RESUMO

Xylella fastidiosa subsp. pauca (XFP), Neofusicoccum mediterraneum, N. stellenboschiana and other fungi have been found in olive groves of Salento (Apulia, Italy) that show symptoms of severe decline. XFP is well known to be the cause of olive quick decline syndrome (OQDS). It has also been assessed that Neofusicoccum spp. causes a distinct disease syndrome, namely, branch and twig dieback (BTD). All these phytopathogens incite severe symptoms that can compromise the viability of large canopy sectors or the whole tree. However, their specific symptoms are not easily distinguished, especially during the final stages of the disease when branches are definitively desiccated. By contrast, they can be differentiated during the initial phases of the infection when some facets of the diseases are typical, especially wood discoloration, incited solely by fungi. Here, we describe the typical symptomatological features of OQDS and BTD that can be observed in the field and that have been confirmed by Koch postulate experiments. Similar symptoms, caused by some abiotic adverse conditions and even by additional biotic factors, are also described. Thus, this review aims at: (i) raising the awareness that declining olive trees in Salento do not have to be linked a priori to XFP; (ii) defining the guidelines for a correct symptomatic diagnosis to orient proper laboratory analyses, which is crucial for the application of effective control measures. The possibility that bacterium and fungi could act as a polyspecies and in conjunction with predisposing abiotic stresses is also widely discussed.

2.
Microorganisms ; 11(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37630682

RESUMO

The aim of this study was to establish a link between genetic diversity and the geographic origin of Pectobacterium strains belonging to three species-P. carotovorum, P. versatile, and P. odoriferum-isolated from cabbage in Serbia by comparing their sequences with those of strains sourced from different hosts and countries in Europe, Asia, and North America. Phylogeographic relatedness was reconstructed using the Templeton, Crandall, and Sing's (TCS) haplotype network based on concatenated sequences of the housekeeping genes dnaX, icdA, mdh, and proA, while pairwise genetic distances were computed by applying the p-distance model. The obtained TCS haplotype networks indicated the existence of high intra-species genetic diversity among strains of all three species, as reflected in the 0.2-2.3%, 0.2-2.5%, and 0.1-1.7% genetic distance ranges obtained for P. carotovorum, P. versatile, and P. odoriferum, respectively. Five new haplotypes (denoted as HPc1-HPc5) were detected among cabbage strains of P. carotovorum, while one new haplotype was identified for both P. versatile (HPv1) and P. odoriferum (HPo1). None of the TCS haplotype networks provided evidence of significant correlation between geographic origin and the determined haplotypes, i.e., the infection origin. However, as haplotype network results are affected by the availability of sequencing data in public databases for the used genes and the number of analyzed strains, these findings may also be influenced by small sample size.

3.
Sci Rep ; 12(1): 5973, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35396514

RESUMO

Xylella fastidiosa is a xylem-limited bacterium causing a range of economically important plant diseases in hundreds of crops. Over the last decade, a severe threat due to Olive Quick Decline Syndrome (OQDS), caused by Xylella fastidiosa subspecies pauca, affected the Salento olive groves (Apulia, South-East Italy). Very few phyto-therapeutics, including a Zn/Cu citric acid biocomplex foliar treatment, were evaluated to mitigate this disease. However, the traditional foliar applications result in the agro-actives reaching only partially their target. Therefore the development of novel endo-therapeutic systems was suggested. Metabolite fingerprinting is a powerful method for monitoring both, disease progression and treatment effects on the plant metabolism, allowing biomarkers detection. We performed, for the first time, short-term monitoring of metabolic pathways reprogramming for infected Ogliarola salentina and Cima di Melfi olive trees after precision intravascular biocomplex delivery using a novel injection system. Upon endo therapy, we observed specific variations in the leaf content of some metabolites. In particular, the 1H NMR-based metabolomics approach showed, after the injection, a significant decrease of both the disease biomarker quinic acid and mannitol with simultaneous increase of polyphenols and oleuropein related compounds in the leaf's extracts. This combined metabolomics/endo-therapeutic methodology provided useful information in the comprehension of plant physiology for future applications in OQDS control.


Assuntos
Metabolômica , Olea , Xylella , Metabolômica/métodos , Olea/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Espectroscopia de Prótons por Ressonância Magnética/métodos , Xylella/metabolismo
4.
Microb Ecol ; 80(1): 81-102, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31897570

RESUMO

Since 2008, the kiwifruit industry has been devastated by a pandemic outbreak of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker. This disease has become the most significant limiting factor in kiwifruit production. Psa colonizes different organs of the host plant, causing a specific symptomatology on each of them. In addition, the systemic invasion of the plant may quickly lead to plant death. Despite the massive risk that this disease poses to the kiwifruit industry, studies focusing on Psa ecology have been sporadic, and a comprehensive description of the disease epidemiology is still missing. Optimal environmental conditions for infection, dispersal and survival in the environment, or the mechanisms of penetration and colonization of host tissues have not been fully elucidated yet. The present work aims to provide a synthesis of the current knowledge, and a deeper understanding of the epidemiology of kiwifruit bacterial canker based on new experimental data. The pathogen may survive in the environment or overwinter in dormant tissues and be dispersed by wind or rain. Psa was observed in association with several plant structures (stomata, trichomes, lenticels) and wounds, which could represent entry points for apoplast infection. Environmental conditions also affect the bacterial colonization, with lower optimum values of temperature and humidity for epiphytic than for endophytic growth, and disease incidence requiring a combination of mild temperature and leaf wetness. By providing information on Psa ecology, these data sets may contribute to plan efficient control strategies for kiwifruit bacterial canker.


Assuntos
Actinidia/fisiologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia
5.
Plants (Basel) ; 8(5)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035723

RESUMO

Xylella fastidiosa subsp. pauca is a xylem-limited bacterial phytopathogen currently found associated on many hectares with the "olive quick decline syndrome" in the Apulia region (Southern Italy), and the cultivars Ogliarola salentina and Cellina di Nardò result in being particularly sensitive to the disease. In order to find compounds showing the capability of reducing the population cell density of the pathogen within the leaves, we tested, in some olive orchards naturally-infected by the bacterium, a zinc-copper-citric acid biocomplex, namely Dentamet®, by spraying it to the crown, once per month, during spring and summer. The occurrence of the pathogen in the four olive orchards chosen for the trial was molecularly assessed. A 1H NMR metabolomic approach, in conjunction with a multivariate statistical analysis, was applied to investigate the metabolic pattern of both infected and treated adult olive cultivars, Ogliarola salentina and Cellina di Nardò trees, in two sampling periods, performed during the first year of the trial. For both cultivars and sampling periods, the orthogonal partial least squares discriminant analysis (OPLS-DA) gave good models of separation according to the treatment application. In both cultivars, some metabolites such as quinic acid, the aldehydic form of oleoeuropein, ligstroside and phenolic compounds, were consistently found as discriminative for the untreated olive trees in comparison with the Dentamet®-treated trees. Quinic acid, a precursor of lignin, was confirmed as a disease biomarker for the olive trees infected by X. fastidiosa subsp. pauca. When treated with Dentamet®, the two cultivars showed a distinct response. A consistent increase in malic acid was observed for the Ogliarola salentina trees, whereas in the Cellina di Nardò trees the treatments attenuate the metabolic response to the infection. To note that in Cellina di Nardò trees at the first sampling, an increase in γ-aminobutyric acid (GABA) was observed. This study highlights how the infection incited by X. fastidiosa subsp. pauca strongly modifies the overall metabolism of olive trees, and how a zinc-copper-citric acid biocomplex can induce an early re-programming of the metabolic pathways in the infected trees.

6.
Food Res Int ; 112: 369-377, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30131148

RESUMO

Postharvest partial dehydration is a technique used in the production of important dry and sweet wines in Italy. An accurate management of the dehydration environmental parameters allows for the modulation of berry metabolism and the maintenance/improvement of the enochemical quality of grapes. As it is known that water loss induces oxidative processes in berries, our hypothesis was that methyl jasmonate (MeJA) and ozone (O3), as postharvest treatments before partial dehydration, might be beneficial for grape berry quality. Grape bunches were postharvest treated with 10 or 100 µM MeJA at 20 °C or with ozone gas at 10 °C, in 70% relative humidity (RH) and air flow, for 12 h; the control bunches were untreated and kept at 20 °C for 12 h. Subsequently, partial dehydration was performed at 10 °C until a 30% weight loss (w.l.) was reached. MeJA hastened grape berry water loss. Polyphenol and flavonoid contents at the end of the partial dehydration were lower in the MeJA-treated berries than in the control and ozone samples. Superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) activity rates increased in the treated samples. In contrast, lipoxygenase (LOX) and polyphenoloxidase (PPO) had lower activities in the MeJA-treated samples than in the controls. It would seem that MeJA accelerates grape water loss but at the same time activates the antioxidant system. Ozone does not accelerate grape water loss but induces the antioxidant system and increases polyphenol content.


Assuntos
Acetatos/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Ciclopentanos/farmacologia , Manipulação de Alimentos/métodos , Frutas/enzimologia , Oxidantes Fotoquímicos/farmacologia , Oxilipinas/farmacologia , Ozônio/farmacologia , Vitis/enzimologia , Água/metabolismo , Dessecação , Frutas/crescimento & desenvolvimento , Gases , Fatores de Tempo , Vitis/crescimento & desenvolvimento
7.
Front Microbiol ; 9: 656, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29675009

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) biovar 3 caused pandemic bacterial canker of Actinidia chinensis and Actinidia deliciosa since 2008. In Europe, the disease spread rapidly in the kiwifruit cultivation areas from a single introduction. In this study, we investigated the genomic diversity of Psa biovar 3 strains during the primary clonal expansion in Europe using single molecule real-time (SMRT), Illumina and Sanger sequencing technologies. We recorded evidences of frequent mobilization and loss of transposon Tn6212, large chromosome inversions, and ectopic integration of IS sequences (remarkably ISPsy31, ISPsy36, and ISPsy37). While no phenotype change associated with Tn6212 mobilization could be detected, strains CRAFRU 12.29 and CRAFRU 12.50 did not elicit the hypersensitivity response (HR) on tobacco and eggplant leaves and were limited in their growth in kiwifruit leaves due to insertion of ISPsy31 and ISPsy36 in the hrpS and hrpR genes, respectively, interrupting the hrp cluster. Both strains had been isolated from symptomatic plants, suggesting coexistence of variant strains with reduced virulence together with virulent strains in mixed populations. The structural differences caused by rearrangements of self-genetic elements within European and New Zealand strains were comparable in number and type to those occurring among the European strains, in contrast with the significant difference in terms of nucleotide polymorphisms. We hypothesize a relaxation, during clonal expansion, of the selection limiting the accumulation of deleterious mutations associated with genome structural variation due to transposition of mobile elements. This consideration may be relevant when evaluating strategies to be adopted for epidemics management.

8.
Phytopathology ; 107(6): 645-653, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28112597

RESUMO

Bacterial canker disease caused by Pseudomonas syringae pv. actinidiae, an emerging pathogen of kiwifruit plants, has recently brought about major economic losses worldwide. Genetic studies on virulence functions of P. syringae pv. actinidiae have not yet been reported and there is little experimental data regarding bacterial genes involved in pathogenesis. In this study, we performed a genetic screen in order to identify transposon mutants altered in the lipolytic activity because it is known that mechanisms of regulation, production, and secretion of enzymes often play crucial roles in virulence of plant pathogens. We aimed to identify the set of secretion and global regulatory loci that control lipolytic activity and also play important roles in in planta fitness. Our screen for altered lipolytic activity phenotype identified a total of 58 Tn5 transposon mutants. Mapping all these Tn5 mutants revealed that the transposons were inserted in genes that play roles in cell division, chemotaxis, metabolism, movement, recombination, regulation, signal transduction, and transport as well as a few unknown functions. Several of these identified P. syringae pv. actinidiae Tn5 mutants, notably the functions affected in phosphomannomutase AlgC, lipid A biosynthesis acyltransferase, glutamate-cysteine ligase, and the type IV pilus protein PilI, were also found affected in in planta survival and/or growth in kiwifruit plants. The results of the genetic screen and identification of novel loci involved in in planta fitness of P. syringae pv. actinidiae are presented and discussed.


Assuntos
Actinidia/microbiologia , Proteínas de Bactérias/genética , Doenças das Plantas/microbiologia , Pseudomonas syringae/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Loci Gênicos/genética , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Lipólise , Mutagênese Insercional , Fenótipo , Fosfotransferases (Fosfomutases)/genética , Fosfotransferases (Fosfomutases)/metabolismo , Folhas de Planta/microbiologia , Pseudomonas syringae/patogenicidade , Pseudomonas syringae/fisiologia , Virulência/genética
9.
Foods ; 4(4): 501-523, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28231220

RESUMO

The effectiveness of chitosan fruit coating to delay the qualitative and nutraceutical traits of three strawberry cultivars, namely "Candonga", "Jonica" and "Sabrina", as well as the effects of chitosan on antioxidant enzymes were evaluated. The fruits were coated with 1% and 2% chitosan solution and stored at 2 °C for nine days. Samples were taken every three days. Physico-chemical (weight loss, soluble solid content and titratable acidity) and nutraceutical (total polyphenol, anthocyanin, flavonoid, ascorbic acid content and antioxidant capacity) properties along with the enzymatic activity (catalase (CAT), ascorbate peroxidase (APX), polyphenol oxidase (PPO), guaiacol peroxidase (GPX) and lipoxygenase (LOX)) were evaluated. Chitosan treatment significantly reduced water loss and delayed the qualitative changes in color, titratable acidity and ascorbic acid content in dose- and cultivar-dependent manners. Additionally, changes in the total polyphenol, anthocyanin and flavonoid contents and the antioxidant capacity of chitosan-coated strawberry fruits were delayed. Chitosan coating enhanced the activity of some antioxidant enzymes, preventing flesh browning and reducing membrane damage. A global view of the responses of the three strawberry cultivars to chitosan coating and storage temperature was obtained using principal component analysis. Chitosan-coated fruit exhibited a slower rate of deterioration, compared to uncoated fruit in all tested cultivars.

10.
Phytopathology ; 104(12): 1274-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24875383

RESUMO

A total of 34 phytopathogenic strain genomes belonging to the Pseudomonas syringae species complex and related species, including many pathotype strains, were assessed using average nucleotide identity (ANI) analysis. Their taxonomic relationships were consistently confirmed by the tetranucleotide frequency correlation coefficient (TETRA) values, multilocus sequence typing analysis (MLSA) performed with seven housekeeping genes, using both maximum likelihood and Bayesian methods, and split consensus network analyses. The ANI, MLSA, and split consensus analyses provided consistent and identical results. We confirmed the occurrence of the well-demarcated genomospecies inferred sensu Gardan et al. using DNA-DNA hybridization and ribotyping analyses. However, some P. syringae strains of the pathovars morsprunorum and lachrymans were placed in different genomospecies in our analyses. Genomospecies 1, 2, 4, 6, and 9 resulted well demarcated, whereas strains of genomospecies 3 and 8 had ANI values between 95 and 96% in some cases, confirming that this threshold reveals very closely related species that might represent cases of splitting entities or the convergence of different species to the same ecological niche. This study confirms the robustness of the combination of genomic and phylogenetic approaches in revealing taxonomic relationships among closely related bacterial strains and provides the basis for a further reliable demarcation of the phytopathogenic Pseudomonas species. Within each species, the pathovars might represent distinct ecological units. The possibility of performing extensive and standardized host range and phenotypic tests with many strains of different pathovars can assist phytobacteriologists for better determining the boundaries of these ecological units.


Assuntos
Genoma Bacteriano/genética , Genômica , Doenças das Plantas/parasitologia , Plantas/microbiologia , Pseudomonas syringae/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genes Essenciais/genética , Especificidade de Hospedeiro , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Hibridização de Ácido Nucleico , Filogenia , Análise de Sequência de DNA
11.
J Basic Microbiol ; 54(11): 1210-21, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24810619

RESUMO

The phytopathogen Pseudomonas syringae pv. actinidiae (Psa) is the causal agent of bacterial canker of kiwifruit. In the last years, it has caused severe economic losses to Actinidia spp. cultivations, mainly in Italy and New Zealand. Conventional strategies adopted did not provide adequate control of infection. Phage therapy may be a realistic and safe answer to the urgent need for novel antibacterial agents aiming to control this bacterial pathogen. In this study, we described the isolation and characterization of two bacteriophages able to specifically infect Psa. φPSA1, a member of the Siphoviridae family, is a temperate phage with a narrow host range, a long latency, and a burst size of 178; φPSA2 is a lytic phage of Podoviridae family with a broader host range, a short latency, a burst size of 92 and a higher bactericidal activity as determined by the TOD value. The genomic sequence of φPSA1 has a length of 51,090 bp and a low sequence homology with the other siphophages, whereas φPSA2 has a length of 40 472 bp with a 98% homology with Pseudomonas putida bacteriophage gh-1. Of the two phages examined, φPSA2 may be considered as a candidate for phage therapy of kiwifruit disease, while φPSA1 seems specific toward the recent outbreak's isolates and could be useful for Psa typing.


Assuntos
Actinidia/microbiologia , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas syringae/virologia , Bacteriólise , DNA Viral/química , DNA Viral/genética , Genoma Viral , Especificidade de Hospedeiro , Itália , Lisogenia , Viabilidade Microbiana , Dados de Sequência Molecular , Nova Zelândia , Doenças das Plantas/microbiologia , Podoviridae/crescimento & desenvolvimento , Podoviridae/isolamento & purificação , Podoviridae/fisiologia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/crescimento & desenvolvimento , Fagos de Pseudomonas/fisiologia , Análise de Sequência de DNA , Homologia de Sequência , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/isolamento & purificação , Siphoviridae/fisiologia
12.
J Proteomics ; 101: 43-62, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24530627

RESUMO

For plant pathogenic bacteria, adaptation to the apoplast is considered as key in the establishment of the parasitic lifestyle. Pseudomonas syringae pv. actinidiae (Psa), the causal agent of the bacterial canker of kiwifruit, uses leaves as the entry site to colonize plants. Through a combined approach based on 2-DE, nanoLC-ESI-LIT-MS/MS and quantitative PCR, we investigated Psa colonization of the Actinidia deliciosa "Hayward" leaf apoplast during the bacterial biotrophic phase. A total of 58 differentially represented protein species were identified in artificially inoculated leaves. Although the pathogen increased its population density during the initial period of apoplast colonization, plant defense mechanisms were able to impede further disease development. We identified a concerted action of different proteins mainly belonging to the plant defense and metabolism category, which intervened at different times and participated in reducing the pathogen population. On the other hand, bacterial BamA was highly represented during the first week of leaf apoplast colonization, whereas OmpA and Cpn60 were induced later. In addition to presenting further proteomic information on the molecular factors actively participating in this pathosystem, our data characterize the early events of host colonization and will promote the eventual development of novel bioassays for pathogen detection in kiwiplants. BIOLOGICAL SIGNIFICANCE: This original study evaluates on a proteomic perspective the interaction occurring into the leaf apoplast between Actinidia deliciosa and its specific pathogen Pseudomonas syringae pv. actinidiae. Despite the initial bacterial multiplication, a concerted action of the plant defense mechanisms blocked the infection during 21days of apoplast colonization, as revealed by the number of differentially-represented proteins identified in artificially-inoculated and control leaves. Three bacterial proteins were also recognized among the over-represented molecules in infected plants. This study may contribute to improve breeding programs aimed at selecting resistant/tolerant kiwifruit cultivars toward P. syringae pv. actinidiae, which present a high representation of the plant proteins here shown to be involved in resistance mechanisms. In addition to present additional information on the molecular players actively participating in this pathosystem, our data will also facilitate the technological development of future bioassays for the detection of this pathogen in kiwiplants.


Assuntos
Actinidia/química , Actinidia/microbiologia , Folhas de Planta/química , Folhas de Planta/microbiologia , Proteoma/análise , Pseudomonas syringae/patogenicidade , Actinidia/imunologia , Actinidia/metabolismo , Proteínas de Bactérias/análise , Proteínas de Bactérias/metabolismo , Resistência à Doença , Metabolismo Energético , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Folhas de Planta/imunologia , Proteínas de Plantas/análise , Proteômica , Pseudomonas syringae/crescimento & desenvolvimento
13.
PLoS One ; 9(1): e87862, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498215

RESUMO

Pseudomonas syringae pv. actinidiae (Psa) is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS) gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL) quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB) that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.


Assuntos
Actinidia/microbiologia , Acil-Butirolactonas , Doenças das Plantas/microbiologia , Pseudomonas syringae/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Pseudomonas syringae/genética , Proteínas Repressoras/genética , Transativadores/genética
14.
Food Res Int ; 64: 188-199, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30011640

RESUMO

During a screening program aimed at the evaluation of antioxidative and antiproliferative properties, as well as nutritional properties of local edible plants, two endemic sweet cherry cultivars ('Del Monte' and 'Della Recca') were of interest. Macronutrient components (proteins, carbohydrates and lipids) of both the cherry cultivars were determined as well as free and total amino acids. Pomological traits were defined. HPLC-ESI/MSn analysis, carried out on phenolic extracts properly prepared by extractive techniques from freeze dried fruits of both the cherry cultivars, showed that investigated cultivars differed in their colorless phenolic composition. Hydroxycinnamoyl quinic acid derivatives were present in both the cherry cultivars. 'Della Recca' cv. was particularly rich in 4-O-coumaroyl quinic and 5-O-caffeoylquinic acid, whereas quercetin-3-O-rutinoside was the main phenol compound of 'Del Monte' cultivar. The antiradical properties of the extracts were investigated by DPPH and ABTS methods. 'Della Recca' cv. cherries exhibited a pronounced antiradical activity: at 62.5µg/mL dose level ABTS radical cation was converted in its reduced form by 88.7% and DPPH radical was reduced by 75.3%. The antiproliferative efficacy of 'Della Recca' and 'Del Monte' extracts were evaluated towards five cancer cell lines (HepG2, A549, HeLa, SK-B-NE(2)-C, and SH-SY5Y) through MTT assay. 'Della Recca' phenol extract showed a dose-dependent inhibiting activity towards cervical cancer HeLa cell line.

15.
Food Chem ; 140(4): 672-9, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23692752

RESUMO

Few literature data are available on the nutraceutical properties of little widespread local apple cultivars. Such lack of information prevents exploitation of these germplasms for genetic improvement of new cultivars and for the re-evaluation of local agricultural products, which may attract a large share of consumers oriented towards natural food evoking ancient flavours. In this work eight traditional apple cultivars of Southern Italy were analysed in terms of phenolic composition and free radical scavenging activity in comparison with commercial "Annurca" and "Gold Chief® Gold Pink∗" cultivars. HPLC-UV-MS analysis of methanol extracts of the cultivars under examination showed significant differences in phenol distribution within the three main classes of hydroxycinnamates, dihydrochalcones, and flavan-3-ols. Such differences were found to be associated with the antioxidant activities as determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. A good correlation was observed between the percentage of reduced DPPH and the total phenol content (R=0.79). Among all phenol classes, the flavan-3-ol content showed the highest correlation (R=0.77). Almost all of the traditional cultivars examined exhibited a much higher phenol content (2- to 7-fold) and hydrogen donor activity (1.5- to 4-fold) than widely consumed cultivars like "Annurca" and "Gold Chief® Gold Pink∗".


Assuntos
Antioxidantes/análise , Malus/química , Fenóis/análise , Extratos Vegetais/análise , Frutas/química , Frutas/classificação , Itália , Malus/classificação
16.
J Proteomics ; 78: 461-76, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23099348

RESUMO

A pandemic, very aggressive population of Pseudomonas syringae pv. actinidiae is currently causing severe economic losses to kiwifruit crops worldwide. Upon leaf attack, this Gram-negative bacterium systemically reaches the plant shoot in a week period. In this study, combined 2-DE and nanoLC-ESI-LIT-MS/MS procedures were used to describe major proteomic changes in Actinidia chinensis shoot following bacterial inoculation in host leaf. A total of 117 differentially represented protein spots were identified in infected and control shoots. Protein species associated with plant defence, including type-members of the plant basal defence, pathogenesis, oxidative stress and heat shock, or with transport and signalling events, were the most represented category of induced components. Proteins involved in carbohydrate metabolism and photosynthesis were also augmented upon infection. In parallel, a bacterial outer membrane polypeptide component was identified in shoot tissues, whose homologues were already linked to bacterial virulence in other eukaryotes. Semiquantitative RT-PCR analysis confirmed expression data for all selected plant gene products. All these data suggest a general reprogramming of shoot metabolism following pathogen systemic infection, highlighting organ-specific differences within the context of a general similarity with respect to other pathosystems. In addition to present preliminary information on the molecular mechanisms regulating this specific plant-microbe interaction, our results will foster future proteomic studies aimed at characterizing the very early events of host colonization, thus promoting the development of novel bioassays for pathogen detection in kiwifruit material.


Assuntos
Actinidia , Interações Hospedeiro-Patógeno/fisiologia , Doenças das Plantas , Proteínas de Plantas/metabolismo , Brotos de Planta , Proteoma/metabolismo , Pseudomonas syringae/fisiologia , Actinidia/metabolismo , Actinidia/microbiologia , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Proteômica
17.
Mol Plant Pathol ; 13(7): 631-40, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22353258

RESUMO

Pseudomonas syringae pv. actinidiae is the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa) and yellow-fleshed kiwifruit (A. chinensis). A recent, sudden, re-emerging wave of this disease has occurred, almost contemporaneously, in all of the main areas of kiwifruit production in the world, suggesting that it can be considered as a pandemic disease. Recent in-depth genetic studies performed on P. syringae pv. actinidiae strains have revealed that this pathovar is composed of four genetically different populations which, to different extents, can infect crops of the genus Actinidia worldwide. Genome comparisons of these strains have revealed that this pathovar can gain and lose the phaseolotoxin gene cluster, as well as mobile genetic elements, such as plasmids and putative prophages, and that it can modify the repertoire of the effector gene arrays. In addition, the strains currently causing worldwide severe economic losses display an extensive set of genes related to the ecological fitness of the bacterium in planta, such as copper and antibiotic resistance genes, multiple siderophore genes and genes involved in the degradation of lignin derivatives and other phenolics. This pathogen can therefore easily colonize hosts throughout the year. TAXONOMY: Bacteria; Proteobacteria, gamma subdivision; Order Pseudomonadales; Family Pseudomonadaceae; Genus Pseudomonas; Pseudomonas syringae species complex, genomospecies 8; Pathovar actinidiae. MICROBIOLOGICAL PROPERTIES: Gram-negative, aerobic, motile, rod-shaped, polar flagella, oxidase-negative, arginine dihydrolase-negative, DNA 58.5-58.8 mol.% GC, elicits the hypersensitive response on tobacco leaves. HOST RANGE: Primarily studied as the causal agent of bacterial canker of green-fleshed kiwifruit (Actinidia deliciosa), it has also been isolated from yellow-fleshed kiwifruit (A. chinensis). In both species, it causes severe economic losses worldwide. It has also been isolated from wild A. arguta and A. kolomikta. DISEASE SYMPTOMS: In green-fleshed and yellow-fleshed kiwifruits, the symptoms include brown-black leaf spots often surrounded by a chlorotic margin, blossom necrosis, extensive twig die-back, reddening of the lenticels, extensive cankers along the main trunk and leader, and bleeding cankers on the trunk and the leader with a whitish to orange ooze. EPIDEMIOLOGY: Pseudomonas syringae pv. actinidiae can effectively colonize its host plants throughout the year. Bacterial exudates can disperse a large amount of inoculum within and between orchards. In the spring, temperatures ranging from 12 to 18 °C, together with humid conditions, can greatly favour the multiplication of the bacterium, allowing it to systemically move from the leaf to the young shoots. During the summer, very high temperatures can reduce the multiplication and dispersal of the bacterium. Some agronomical techniques, as well as frost, wind, rain and hail storms, can contribute to further spreading. DISEASE CONTROL: An integrated approach that takes into consideration precise scheduled spray treatments with effective and environmentally friendly bactericides and equilibrated plant nutrition, coupled with preventive measures aimed at drastically reducing the bacterial inoculum, currently seems to be the possible best solution for coexistence with the disease. The development of resistant cultivars and pollinators, effective biocontrol agents, including bacteriophages, and compounds that induce the systemic activation of plant defence mechanisms is in progress. USEFUL WEBSITES: Up-to-date information on bacterial canker research progress and on the spread of the disease in New Zealand can be found at: http://www.kvh.org.nz. Daily information on the spread of the disease and on the research being performed worldwide can be found at: http://www.freshplaza.it.


Assuntos
Pseudomonas syringae/fisiologia , Evolução Biológica , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Pseudomonas syringae/classificação , Pseudomonas syringae/genética , Pseudomonas syringae/isolamento & purificação , Virulência
18.
PLoS One ; 6(11): e27297, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22132095

RESUMO

A recent re-emerging bacterial canker disease incited by Pseudomonas syringae pv. actinidiae (Psa) is causing severe economic losses to Actinidia chinensis and A. deliciosa cultivations in southern Europe, New Zealand, Chile and South Korea. Little is known about the genetic features of this pathovar. We generated genome-wide Illumina sequence data from two Psa strains causing outbreaks of bacterial canker on the A. deliciosa cv. Hayward in Japan (J-Psa, type-strain of the pathovar) and in Italy (I-Psa) in 1984 and 1992, respectively as well as from a Psa strain (I2-Psa) isolated at the beginning of the recent epidemic on A. chinensis cv. Hort16A in Italy. All strains were isolated from typical leaf spot symptoms. The phylogenetic relationships revealed that Psa is more closely related to P. s. pv. theae than to P. avellanae within genomospecies 8. Comparative genomic analyses revealed both relevant intrapathovar variations and putative pathovar-specific genomic regions in Psa. The genomic sequences of J-Psa and I-Psa were very similar. Conversely, the I2-Psa genome encodes four additional effector protein genes, lacks a 50 kb plasmid and the phaseolotoxin gene cluster, argK-tox but has acquired a 160 kb plasmid and putative prophage sequences. Several lines of evidence from the analysis of the genome sequences support the hypothesis that this strain did not evolve from the Psa population that caused the epidemics in 1984-1992 in Japan and Italy but rather is the product of a recent independent evolution of the pathovar actinidiae for infecting Actinidia spp. All Psa strains share the genetic potential for copper resistance, antibiotic detoxification, high affinity iron acquisition and detoxification of nitric oxide of plant origin. Similar to other sequenced phytopathogenic pseudomonads associated with woody plant species, the Psa strains isolated from leaves also display a set of genes involved in the catabolism of plant-derived aromatic compounds.


Assuntos
Actinidia/microbiologia , Genoma Bacteriano/genética , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Adaptação Fisiológica/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cobre/toxicidade , Elementos de DNA Transponíveis/genética , Evolução Molecular , Genes Bacterianos/genética , Ferro/metabolismo , Solanum lycopersicum/microbiologia , Família Multigênica , Óxido Nítrico/metabolismo , Ornitina/análogos & derivados , Ornitina/genética , Filogenia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Plasmídeos/genética , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/fisiologia , Percepção de Quorum/efeitos dos fármacos , Percepção de Quorum/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Especificidade da Espécie , Sacarose/metabolismo , Virulência/genética
19.
Phytopathology ; 95(11): 1316-24, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18943363

RESUMO

ABSTRACT Thirty-eight bacterial strains isolated from hazelnut (Corylus avellana) cv. Tonda Gentile delle Langhe showing a twig dieback in Piedmont and Sardinia, Italy, were studied by a polyphasic approach. All strains were assessed by fatty acids analysis and repetitive sequence-based polymerase chain reaction (PCR) fingerprinting using BOX and ERIC primer sets. Representative strains also were assessed by sequencing the 16S rDNA and hrpL genes, determining the presence of the syrB gene, testing their biochemical and nutritional characteristics, and determining their pathogenicity to hazelnut and other plants species or plant organs. Moreover, they were compared with reference strains of other phytopathogenic pseudomonads. The strains from hazelnut belong to Pseudomonas syringae (sensu latu), LOPAT group Ia. Both fatty acids and repetitive-sequence-based PCR clearly discriminate such strains from other Pseudomonas spp., including P. avellanae and other P. syringae pathovars as well as P. syringae pv. syringae strains from hazelnut. Also, the sequencing of 16S rDNA and hrpL genes differentiated them from P. avellanae and from P. syringae pv. syringae. They did not possess the syrB gene. Some nutritional tests also differentiated them from related P. syringae pathovars. Upon artificial inoculation, these strains incited severe twig diebacks only on hazelnut. Our results justify the creation of a new pathovar because the strains from hazelnut constitute a homogeneous group and a discrete phenon. The name of P. syringae pv. coryli is proposed and criteria for routine identification are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA